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Notation.
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Proof: Direct computations.

Corollary. For V convex and any x0 ∈ X , the Sinkhorn potential flow starting at b0 =
B (δx0

) is given by B(δxt
) with (xt)t the subgradient flow of V .

Flow of a Dirac mass

7/12



1. The Riemannian Geometry of Sε 2. The equation and its structure

3. Well posedness and properties 4. Convergence of the SJKO scheme

P(X )
B

b1t

b2t

t

E

Emin

−−−→
τ→0

Plan



Theorem. There exists a unique Sinkhorn potential flow
(bt)t starting at b0 ∈ B which additionally verifies

(a) The norm
∥∥∥ḃt∥∥∥

Hc

decreases.

(b) The flow is contractive i.e. two flows b1, b2 have
decreasing

∥∥b1t − b2t
∥∥
Hc

.

8/12

Existence, uniqueness, contractivity

8/12



Theorem. There exists a unique Sinkhorn potential flow
(bt)t starting at b0 ∈ B which additionally verifies

(a) The norm
∥∥∥ḃt∥∥∥
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∥∥∥ḃt∥∥∥

Hc

decreases.

Moreover,

(b) The flow is contractive i.e. two flows b1, b2 have
decreasing

∥∥b1t − b2t
∥∥
Hc

.

b1t

b2t

X

x1

x2

x3

x4

x5

x6

x7

x8

x9

Sketch of proof: Discretize the space to utilize the structure of Hc :

For X = {x1, . . . , xn}, C(X ) = Hc = R
n

W antisymmetric, continuous Hc → Hc and P = ∂ιK,

W +P maximal monotone (gives contractivity),

Existence, uniqueness, contractivity

8/12



Theorem. There exists a unique Sinkhorn potential flow
(bt)t starting at b0 ∈ B which additionally verifies

(a) The norm
∥∥∥ḃt∥∥∥
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Theorem. On a finite space, with (bτk)k given by the SJKO

scheme after embedding,
(
b
τ

t

)
t
the piecewise constant inter-

polation, (bτt )t the piecewise geodesic interpolation, then

bτ, b
τ −−−→

τ→0
b uniformly on [0, T ]

with b the Sinkhorn potential flow of V starting at b0.

Classical estimates and compactness yields a limit

Optimality condition of SJKO: 1
2τ

(
fµτ

k+1,µ
τ
k
− fµτ

k+1

)
+ V + pτk+1 = 0

11/12
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What we have seen:

SJKO limit (valid for finite X ) after embedding is a constrained rotational motion

The equation is well posed for any V ∈ C(X ) and contractive

The solution converges to the energy minimizer when it is unique, sometimes through
”teleportation”

Limit τ → 0 for any compact space

Quantitative asymptotics

Fokker-Planck case

(
E(µ) = ⟨µ, V ⟩+

∫
log(µ)dµ

)
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∂ft,s
∂s

= −ε (Id−Kt,sKs,t)
−1

Ht,s [µ̇s]

H∗
µt,µs

→ Hµt,µs

where Hµ,ν := exp
(

fµ,ν

ε

)
Hc

∈ H∗
µs,0

But generally speaking H∗
µs,0 ̸⊂ H∗

µt,µs
!

Challenges in the general case



Theorem. On a finite space, the differential inclusion ḃt +Wbt + pt = 0
pt ∈ ∂ιK(bt)
bt ∈ B

has a solution that additionally verifies

(a) pt = argmin
p∈∂ιK(bt)

∥Wbt + p∥Hc

(b) d
dtE(bt) = −g̃µt

(
ḃt, ḃt

)
(c)

∥∥∥ḃt∥∥∥
Hc

decreases.

The flow is contractive.

=⇒


(E(bt))t decreases∫ T

0

∥∥∥ḃt∥∥∥2
Hc

dt bounded

bt

−Wbt
−p

Finite space case
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