

Università Commerciale Luigi Bocconi

Gradient Flows in the Geometry of the Sinkhorn Divergence

Mathis Hardion

10/10/2024

Wasserstein JKO: $\mu_{k+1}^{\tau} \in \argmin_{\mu \in \mathcal{P}(\mathcal{X})}$ $E(\mu) + \frac{1}{2\tau} W_2(\mu, \mu_k^{\tau})^2$

Wasserstein JKO: $\mu_{k+1}^{\tau} \in \argmin_{\substack{\sigma \in \mathcal{D}(X) \\ \sigma \in \mathcal{D}(X)}} E(\mu) + \frac{1}{2\tau} W_2(\mu, \mu_k^{\tau})^2$ $\mu{\in}\mathcal{P}(\mathcal{X})$ as $\tau \rightarrow 0$: $\sqrt{ }$ ^J \mathcal{L} $E(\mu) =$ $\iint_{\mathcal{X}} \log(\mu) d\mu \to \dot{\mu}_t = \Delta \mu_t$

Wasserstein JKO: $\mu_{k+1}^{\tau} \in \argmin_{\substack{\sigma \in \mathcal{D}(X) \\ \sigma \in \mathcal{D}(X)}} E(\mu) + \frac{1}{2\tau} W_2(\mu, \mu_k^{\tau})^2$ $\mu{\in}\mathcal{P}(\mathcal{X})$ as $\tau \rightarrow 0$: $\sqrt{ }$ ^J \mathcal{L} $E(\mu) =$ $\iint_{\mathcal{X}} \log(\mu) d\mu \to \dot{\mu}_t = \Delta \mu_t$ $E(\mu) = \langle \mu, V \rangle \rightarrow \dot{\mu}_t = \text{div} (\mu_t \nabla V)$

Wasserstein JKO: $\mu_{k+1}^{\tau} \in \argmin_{\substack{\sigma \in \mathcal{D}(X) \\ \sigma \in \mathcal{D}(X)}} E(\mu) + \frac{1}{2\tau} W_2(\mu, \mu_k^{\tau})^2$ $\mu \in \mathcal{P}(\mathcal{X})$ $\mu \in \mathcal{P}(\mathcal{X})$ as $\tau \rightarrow 0$: $\sqrt{ }$ ^J \mathcal{L} $E(\mu) =$ $\int_{\mathcal{X}} \log(\mu) d\mu \rightarrow \dot{\mu}_t = \Delta \mu_t$ $E(\mu) = \langle \mu, V \rangle \rightarrow \dot{\mu}_t = \text{div} (\mu_t \nabla V) | \text{ Our focus } (V \in \mathcal{C}(\mathcal{X})).$

Wasserstein JKO: $\mu_{k+1}^{\tau} \in \argmin_{\substack{\sigma \in \mathcal{D}(X) \\ \sigma \in \mathcal{D}(X)}} E(\mu) + \frac{1}{2\tau} W_2(\mu, \mu_k^{\tau})^2$ $\mu \in \mathcal{P}(\mathcal{X})$ $\mu \in \mathcal{P}(\mathcal{X})$ as $\tau \rightarrow 0$: $\sqrt{ }$ ^J \mathcal{L} $E(\mu) =$ $\int_{\mathcal{X}} \log(\mu) d\mu \rightarrow \dot{\mu}_t = \Delta \mu_t$ $E(\mu) = \langle \mu, V \rangle \rightarrow \dot{\mu}_t = \text{div} (\mu_t \nabla V) | \text{ Our focus } (V \in \mathcal{C}(\mathcal{X})).$

But W_2^2 is computationally expensive ...

Wasserstein JKO:
$$
\mu_{k+1}^{\tau} \in \arg\min_{\mu \in \mathcal{P}(\mathcal{X})} E(\mu) + \frac{1}{2\tau} W_2(\mu, \mu_k^{\tau})^2
$$

as $\tau \to 0$:

$$
\begin{cases} E(\mu) = \int_{\mathcal{X}} \log(\mu) d\mu \to \mu_t = \Delta \mu_t \\ \boxed{E(\mu) = \langle \mu, V \rangle \to \mu_t = \text{div}(\mu_t \nabla V)} \text{ Our focus } (V \in \mathcal{C}(\mathcal{X})). \end{cases}
$$

But W_2^2 is computationally expensive ...

 \rightarrow Use its entropic regularization OT_{ϵ} instead (Peyré, 2015).

Wasserstein JKO: $\mu_{k+1}^{\tau} \in \argmin_{\substack{\sigma \in \mathcal{D}(X) \\ \sigma \in \mathcal{D}(X)}} E(\mu) + \frac{1}{2\tau} W_2(\mu, \mu_k^{\tau})^2$ $\mu \in \mathcal{P}(\mathcal{X})$ $\mu \in \mathcal{P}(\mathcal{X})$ as $\tau \rightarrow 0$: $\sqrt{ }$ ^J \mathcal{L} $E(\mu) =$ $\int_{\mathcal{X}} \log(\mu) d\mu \rightarrow \dot{\mu}_t = \Delta \mu_t$ $E(\mu) = \langle \mu, V \rangle \rightarrow \dot{\mu}_t = \text{div} (\mu_t \nabla V) | \text{ Our focus } (V \in \mathcal{C}(\mathcal{X})).$

But W_2^2 is computationally expensive ...

 $\overline{\triangleright}$ Use its entropic regularization OT_{ϵ} instead (Peyré, 2015).

Above PDEs are recovered when $\varepsilon \ll \tau$ (Carlier et al., 2017), but it slows down convergence.

Wasserstein JKO: $\mu_{k+1}^{\tau} \in \argmin_{\substack{\sigma \in \mathcal{D}(X) \\ \sigma \in \mathcal{D}(X)}} E(\mu) + \frac{1}{2\tau} W_2(\mu, \mu_k^{\tau})^2$ $\mu \in \mathcal{P}(\mathcal{X})$ $\mu \in \mathcal{P}(\mathcal{X})$ as $\tau \rightarrow 0$: $\sqrt{ }$ ^J \mathcal{L} $E(\mu) =$ $\int_{\mathcal{X}} \log(\mu) d\mu \rightarrow \dot{\mu}_t = \Delta \mu_t$ $E(\mu) = \langle \mu, V \rangle \rightarrow \dot{\mu}_t = \text{div} (\mu_t \nabla V) | \text{ Our focus } (V \in \mathcal{C}(\mathcal{X})).$

But W_2^2 is computationally expensive ...

 $\overline{\triangleright}$ Use its entropic regularization OT_{ϵ} instead (Peyré, 2015).

Above PDEs are recovered when $\varepsilon \ll \tau$ (Carlier et al., 2017), but it slows down convergence.

For fixed $\varepsilon > 0$: OT_{ε} numerically accessible, smooth, better statistical properties (Genevay et al., 2018, 2019).

Wasserstein JKO: $\mu_{k+1}^{\tau} \in \argmin_{\substack{\sigma \in \mathcal{D}(X) \\ \sigma \in \mathcal{D}(X)}} E(\mu) + \frac{1}{2\tau} W_2(\mu, \mu_k^{\tau})^2$ $\mu \in \mathcal{P}(\mathcal{X})$ $\mu \in \mathcal{P}(\mathcal{X})$ as $\tau \rightarrow 0$: $\sqrt{ }$ ^J \mathcal{L} $E(\mu) =$ $\int_{\mathcal{X}} \log(\mu) d\mu \rightarrow \dot{\mu}_t = \Delta \mu_t$ $E(\mu) = \langle \mu, V \rangle \rightarrow \dot{\mu}_t = \text{div} (\mu_t \nabla V) | \text{ Our focus } (V \in \mathcal{C}(\mathcal{X})).$

But W_2^2 is computationally expensive ...

 $\overline{\triangleright}$ Use its entropic regularization OT_{ϵ} instead (Peyré, 2015).

Above PDEs are recovered when $\varepsilon \ll \tau$ (Carlier et al., 2017), but it slows down convergence.

For fixed $\varepsilon > 0$: OT_{ε} numerically accessible, smooth, better statistical properties (Genevay et al., 2018, 2019).

 $\mathrm{OT}_\varepsilon(\mu,\mu) > 0 \ldots$

Wasserstein JKO: $\mu_{k+1}^{\tau} \in \argmin_{\substack{\sigma \in \mathcal{D}(X) \\ \sigma \in \mathcal{D}(X)}} E(\mu) + \frac{1}{2\tau} W_2(\mu, \mu_k^{\tau})^2$ $\mu \in \mathcal{P}(\mathcal{X})$ $\mu \in \mathcal{P}(\mathcal{X})$ as $\tau \rightarrow 0$: $\sqrt{ }$ ^J \mathcal{L} $E(\mu) =$ $\int_{\mathcal{X}} \log(\mu) d\mu \rightarrow \dot{\mu}_t = \Delta \mu_t$ $E(\mu) = \langle \mu, V \rangle \rightarrow \dot{\mu}_t = \text{div} (\mu_t \nabla V) | \text{ Our focus } (V \in \mathcal{C}(\mathcal{X})).$

But W_2^2 is computationally expensive ...

 $\overline{\triangleright}$ Use its entropic regularization OT_{ϵ} instead (Peyré, 2015).

Above PDEs are recovered when $\varepsilon \ll \tau$ (Carlier et al., 2017), but it slows down convergence.

For fixed $\varepsilon > 0$: OT_{ε} numerically accessible, smooth, better statistical properties (Genevay et al., 2018, 2019).

 $\mathrm{OT}_{\varepsilon}(\mu,\mu) > 0 \ldots \rightarrow$ use the debiased Sinkhorn Divergence.

Wasserstein JKO: $\mu_{k+1}^{\tau} \in \argmin_{\substack{\sigma \in \mathcal{D}(X) \\ \sigma \in \mathcal{D}(X)}} E(\mu) + \frac{1}{2\tau} W_2(\mu, \mu_k^{\tau})^2$ $\mu \in \mathcal{P}(\mathcal{X})$ $\mu \in \mathcal{P}(\mathcal{X})$ as $\tau \rightarrow 0$: $\sqrt{ }$ ^J \mathcal{L} $E(\mu) =$ $\int_{\mathcal{X}} \log(\mu) d\mu \rightarrow \dot{\mu}_t = \Delta \mu_t$ $E(\mu) = \langle \mu, V \rangle \rightarrow \dot{\mu}_t = \text{div} (\mu_t \nabla V) | \text{ Our focus } (V \in \mathcal{C}(\mathcal{X})).$

But W_2^2 is computationally expensive ...

 $\overline{\triangleright}$ Use its entropic regularization OT_{ϵ} instead (Peyré, 2015).

Above PDEs are recovered when $\varepsilon \ll \tau$ (Carlier et al., 2017), but it slows down convergence.

For fixed $\varepsilon > 0$: OT_{ε} numerically accessible, smooth, better statistical properties (Genevay et al., 2018, 2019).

 $\mathrm{OT}_{\varepsilon}(\mu,\mu) > 0 \ldots \rightarrow$ use the debiased Sinkhorn Divergence.

Sinkhorn JKO: $\mu_{k+1}^{\tau} \in \arg \min_{\mathcal{D}(\mu)} E(\mu) + \frac{1}{2\tau} S_{\varepsilon}(\mu, \mu_k^{\tau}).$ $\mu \in \mathcal{P}(\mathcal{X})$

Wasserstein JKO: $\mu_{k+1}^{\tau} \in \argmin_{\substack{\sigma \in \mathcal{D}(X) \\ \sigma \in \mathcal{D}(X)}} E(\mu) + \frac{1}{2\tau} W_2(\mu, \mu_k^{\tau})^2$ $\mu \in \mathcal{P}(\mathcal{X})$ $\mu \in \mathcal{P}(\mathcal{X})$ as $\tau \rightarrow 0$: $\sqrt{ }$ ^J \mathcal{L} $E(\mu) =$ $\int_{\mathcal{X}} \log(\mu) d\mu \rightarrow \dot{\mu}_t = \Delta \mu_t$ $E(\mu) = \langle \mu, V \rangle \rightarrow \dot{\mu}_t = \text{div} (\mu_t \nabla V) | \text{ Our focus } (V \in \mathcal{C}(\mathcal{X})).$

But W_2^2 is computationally expensive ...

 $\overline{\triangleright}$ Use its entropic regularization OT_{ϵ} instead (Peyré, 2015).

Above PDEs are recovered when $\varepsilon \ll \tau$ (Carlier et al., 2017), but it slows down convergence.

For fixed $\varepsilon > 0$: OT_{ε} numerically accessible, smooth, better statistical properties (Genevay et al., 2018, 2019).

 $\mathrm{OT}_{\varepsilon}(\mu,\mu) > 0 \ldots \rightarrow$ use the debiased Sinkhorn Divergence.

Sinkhorn JKO: $\mu_{k+1}^{\tau} \in \arg \min_{\mathcal{D}(\mu)} E(\mu) + \frac{1}{2\tau} S_{\varepsilon}(\mu, \mu_k^{\tau}).$ $\mu \in \mathcal{P}(\mathcal{X})$

as $\tau \rightarrow 0$: ??

Wasserstein JKO: $\mu_{k+1}^{\tau} \in \argmin_{\substack{\sigma \in \mathcal{D}(X) \\ \sigma \in \mathcal{D}(X)}} E(\mu) + \frac{1}{2\tau} W_2(\mu, \mu_k^{\tau})^2$ $\mu \in \mathcal{P}(\mathcal{X})$ $\mu \in \mathcal{P}(\mathcal{X})$ as $\tau \rightarrow 0$: $\sqrt{ }$ ^J \mathcal{L} $E(\mu) =$ $\int_{\mathcal{X}} \log(\mu) d\mu \rightarrow \dot{\mu}_t = \Delta \mu_t$ $E(\mu) = \langle \mu, V \rangle \rightarrow \dot{\mu}_t = \text{div} (\mu_t \nabla V) | \text{ Our focus } (V \in \mathcal{C}(\mathcal{X})).$

But W_2^2 is computationally expensive ...

 $\overline{\triangleright}$ Use its entropic regularization OT_{ϵ} instead (Peyré, 2015).

Above PDEs are recovered when $\varepsilon \ll \tau$ (Carlier et al., 2017), but it slows down convergence.

For fixed $\varepsilon > 0$: OT_{ε} numerically accessible, smooth, better statistical properties (Genevay et al., 2018, 2019).

 $\mathrm{OT}_{\varepsilon}(\mu,\mu) > 0 \ldots \rightarrow$ use the debiased Sinkhorn Divergence.

Sinkhorn JKO: $\mu_{k+1}^{\tau} \in \arg \min_{\mathcal{D}(\mu)} E(\mu) + \frac{1}{2\tau} S_{\varepsilon}(\mu, \mu_k^{\tau}).$ $\mu \in \mathcal{P}(\mathcal{X})$

as $\tau \to 0$: ?? $\to \mathbf{W}$ e derive the equation, analyze its structure and properties.

Notation.

 $k_c \coloneqq \exp\left(-\frac{c}{\varepsilon}\right)$ (assumed to be a universal kernel of RKHS \mathcal{H}_c),

Notation.

- $k_c \coloneqq \exp\left(-\frac{c}{\varepsilon}\right)$ (assumed to be a universal kernel of RKHS \mathcal{H}_c),
- f_u: Schrödinger potential for $\mathrm{OT}_{\varepsilon}(\mu, \mu)$,

Notation.

- $k_c \coloneqq \exp\left(-\frac{c}{\varepsilon}\right)$ (assumed to be a universal kernel of RKHS \mathcal{H}_c),
- f_u: Schrödinger potential for $\mathrm{OT}_{\varepsilon}(\mu, \mu)$,
- $k_{\mu} := \exp\left(\frac{1}{\varepsilon}(f_{\mu} \oplus f_{\mu} c)\right), \text{ of RKHS } \mathcal{H}_{\mu}.$

Notation.

- $k_c \coloneqq \exp\left(-\frac{c}{\varepsilon}\right)$ (assumed to be a universal kernel of RKHS \mathcal{H}_c),
- f_u: Schrödinger potential for $\mathrm{OT}_{\varepsilon}(\mu, \mu)$,
- $k_{\mu} := \exp\left(\frac{1}{\varepsilon}(f_{\mu} \oplus f_{\mu} c)\right), \text{ of RKHS } \mathcal{H}_{\mu}.$

Theorem. Let $\mu_t = \mu + t\dot{\mu}$ with $\dot{\mu} \in \mathcal{M}_0(\mathcal{X})$ a signed balanced measure. Then

$$
\frac{1}{t^2}S_{\varepsilon}(\mu,\mu_t)\xrightarrow[t\to0]{} \langle\dot{\mu},G_{\mu}[\dot{\mu}]\rangle
$$

Notation.

- $k_c \coloneqq \exp\left(-\frac{c}{\varepsilon}\right)$ (assumed to be a universal kernel of RKHS \mathcal{H}_c),
- f_u: Schrödinger potential for $\mathrm{OT}_{\varepsilon}(\mu, \mu)$,
- $k_{\mu} := \exp\left(\frac{1}{\varepsilon}(f_{\mu} \oplus f_{\mu} c)\right), \text{ of RKHS } \mathcal{H}_{\mu}.$

Theorem. Let $\mu_t = \mu + t\dot{\mu}$ with $\dot{\mu} \in \mathcal{M}_0(\mathcal{X})$ a signed balanced measure. Then

$$
\frac{1}{t^2}S_{\varepsilon}(\mu,\mu_t)\xrightarrow[t\to 0]{} \langle\dot{\mu},G_{\mu}[\dot{\mu}]\rangle =: \mathbf{g}_{\mu}(\dot{\mu},\dot{\mu}).
$$

Notation.

- $k_c \coloneqq \exp\left(-\frac{c}{\varepsilon}\right)$ (assumed to be a universal kernel of RKHS \mathcal{H}_c),
- f_u: Schrödinger potential for $\mathrm{OT}_{\varepsilon}(\mu, \mu)$,
- $k_{\mu} := \exp\left(\frac{1}{\varepsilon}(f_{\mu} \oplus f_{\mu} c)\right), \text{ of RKHS } \mathcal{H}_{\mu}.$

Theorem. Let $\mu_t = \mu + t\dot{\mu}$ with $\dot{\mu} \in \mathcal{M}_0(\mathcal{X})$ a signed balanced measure. Then

$$
\frac{1}{t^2}S_{\varepsilon}(\mu,\mu_t)\xrightarrow[t\to0]{} \langle\dot{\mu},G_{\mu}[\dot{\mu}]\rangle=:\mathbf{g}_{\mu}(\dot{\mu},\dot{\mu}).
$$

Theorem. The completion of $\mathcal{M}_0(\mathcal{X})$ w.r.t. \mathbf{g}_{μ} is $\mathcal{H}_{\mu,0}^* := \{ \sigma \in \mathcal{H}_{\mu}^* \mid \langle \sigma, 1 \rangle = 0 \}.$

Lavenant, Luckhardt, Mordant, Schmitzer, Tamanini. The Riemannian geometry of Sinkhorn divergences. (2024) 2/12

Notation.

- $k_c \coloneqq \exp\left(-\frac{c}{\varepsilon}\right)$ (assumed to be a universal kernel of RKHS \mathcal{H}_c),
- f_u: Schrödinger potential for $\overline{\text{OT}}_{\varepsilon}(u, u)$,
- $k_{\mu} := \exp\left(\frac{1}{\varepsilon}(f_{\mu} \oplus f_{\mu} c)\right), \text{ of RKHS } \mathcal{H}_{\mu}.$

Theorem. Let $\mu_t = \mu + t\dot{\mu}$ with $\dot{\mu} \in \mathcal{M}_0(\mathcal{X})$ a signed balanced measure. Then

$$
\frac{1}{t^2}S_{\varepsilon}(\mu,\mu_t)\xrightarrow[t\to0]{} \langle\dot{\mu},G_{\mu}[\dot{\mu}]\rangle=:\mathbf{g}_{\mu}(\dot{\mu},\dot{\mu}).
$$

Theorem. The completion of $\mathcal{M}_0(\mathcal{X})$ w.r.t. \mathbf{g}_{μ} is $\mathcal{H}_{\mu,0}^* := \{ \sigma \in \mathcal{H}_{\mu}^* \mid \langle \sigma, 1 \rangle = 0 \}.$

 \rightarrow Includes vertical and horizontal perturbations for c quadratic cost.

Notation.

- $k_c \coloneqq \exp\left(-\frac{c}{\varepsilon}\right)$ (assumed to be a universal kernel of RKHS \mathcal{H}_c),
- f_u: Schrödinger potential for $\overline{\text{OT}}_{\varepsilon}(u, u)$,
- $k_{\mu} := \exp\left(\frac{1}{\varepsilon}(f_{\mu} \oplus f_{\mu} c)\right), \text{ of RKHS } \mathcal{H}_{\mu}.$

Theorem. Let $\mu_t = \mu + t\dot{\mu}$ with $\dot{\mu} \in \mathcal{M}_0(\mathcal{X})$ a signed balanced measure. Then

$$
\frac{1}{t^2}S_{\varepsilon}(\mu,\mu_t)\xrightarrow[t\to 0]{} \langle\dot{\mu},G_{\mu}[\dot{\mu}]\rangle =: \mathbf{g}_{\mu}(\dot{\mu},\dot{\mu}).
$$

Theorem. The completion of $\mathcal{M}_0(\mathcal{X})$ w.r.t. \mathbf{g}_{μ} is $\mathcal{H}_{\mu,0}^* := \{ \sigma \in \mathcal{H}_{\mu}^* \mid \langle \sigma, 1 \rangle = 0 \}.$

 \rightarrow Includes vertical and horizontal perturbations for c quadratic cost.

 $\forall \mathcal{H}_{\mu}$ depends on $\mu \implies$ change of variables

Lavenant, Luckhardt, Mordant, Schmitzer, Tamanini. The Riemannian geometry of Sinkhorn divergences. (2024) 2/12

Definition. With H_c the Riesz isometry $\mathcal{H}_c^* \to \mathcal{H}_c$,

$$
B(\mu) \coloneqq H_c\left[\exp\left(\frac{f_\mu}{\varepsilon}\right)\mu\right]
$$

Definition. With H_c the Riesz isometry $\mathcal{H}_c^* \to \mathcal{H}_c$,

$$
B(\mu) := H_c \left[\exp \left(\frac{f_\mu}{\varepsilon} \right) \mu \right] = \exp \left(- \frac{f_\mu}{\varepsilon} \right).
$$

Definition. With H_c the Riesz isometry $\mathcal{H}_c^* \to \mathcal{H}_c$,

$$
B(\mu) \coloneqq H_c\left[\exp\left(\frac{f_\mu}{\varepsilon}\right)\mu\right] = \exp\left(-\frac{f_\mu}{\varepsilon}\right).
$$

Theorem. The map B is a homeomorphism onto its image

$$
\mathcal{B} \coloneqq H_c\left[\mathcal{M}_+(\mathcal{X})\right] \cap \left\{b \in \mathcal{H}_c \bigm\|b\|_{\mathcal{H}_c} = 1\right\}
$$

12

Definition. With H_c the Riesz isometry $\mathcal{H}_c^* \to \mathcal{H}_c$,

$$
B(\mu) := H_c \left[\exp \left(\frac{f_\mu}{\varepsilon} \right) \mu \right] = \exp \left(- \frac{f_\mu}{\varepsilon} \right).
$$

Theorem. The map B is a homeomorphism onto its image

$$
\mathcal{B} := \underbrace{\boxed{H_c\left[\mathcal{M}_+(\mathcal{X})\right]} \cap \left\{b \in \mathcal{H}_c \mid \|b\|_{\mathcal{H}_c} = 1\right\}}_{\mu \geq 0}
$$

12

Definition. With H_c the Riesz isometry $\mathcal{H}_c^* \to \mathcal{H}_c$,

$$
B(\mu) := H_c \left[\exp \left(\frac{f_\mu}{\varepsilon} \right) \mu \right] = \exp \left(- \frac{f_\mu}{\varepsilon} \right).
$$

Theorem. The map B is a homeomorphism onto its image

$$
\mathcal{B} := H_c \left[\mathcal{M}_+(\mathcal{X}) \right] \cap \left\{ b \in \mathcal{H}_c \mid \|b\|_{\mathcal{H}_c} = 1 \right\}
$$

$$
\downarrow \qquad \qquad \downarrow
$$

$$
\mu \ge 0 \qquad \qquad \langle \mu, 1 \rangle = 1
$$

12

Definition. With H_c the Riesz isometry $\mathcal{H}_c^* \to \mathcal{H}_c$,

$$
B(\mu) := H_c \left[\exp \left(\frac{f_\mu}{\varepsilon} \right) \mu \right] = \exp \left(- \frac{f_\mu}{\varepsilon} \right).
$$

Theorem. The map B is a homeomorphism onto its image

$$
\mathcal{B} := H_c \left[\mathcal{M}_+(\mathcal{X}) \right] \cap \left\{ b \in \mathcal{H}_c \mid ||b||_{\mathcal{H}_c} = 1 \right\}
$$

$$
\downarrow \qquad \qquad \downarrow
$$

$$
\mu \ge 0 \qquad \qquad \langle \mu, 1 \rangle = 1
$$

12

Definition. With H_c the Riesz isometry $\mathcal{H}_c^* \to \mathcal{H}_c$,

$$
B(\mu) := H_c \left[\exp \left(\frac{f_\mu}{\varepsilon} \right) \mu \right] = \exp \left(- \frac{f_\mu}{\varepsilon} \right).
$$

Theorem. The map B is a homeomorphism onto its image

$$
\mathcal{B} := H_c \left[\mathcal{M}_+(\mathcal{X}) \right] \cap \left\{ b \in \mathcal{H}_c \mid \|b\|_{\mathcal{H}_c} = 1 \right\}
$$

$$
\downarrow \qquad \qquad \downarrow
$$

$$
\mu \ge 0 \qquad \qquad \langle \mu, 1 \rangle = 1
$$

Definition. With H_c the Riesz isometry $\mathcal{H}_c^* \to \mathcal{H}_c$,

$$
B(\mu) \coloneqq H_c\left[\exp\left(\frac{f_\mu}{\varepsilon}\right)\mu\right] = \exp\left(-\frac{f_\mu}{\varepsilon}\right).
$$

Theorem. The map B is a homeomorphism onto its image

$$
\mathcal{B} := H_c \left[\mathcal{M}_+(\mathcal{X}) \right] \cap \left\{ b \in \mathcal{H}_c \mid \|b\|_{\mathcal{H}_c} = 1 \right\}
$$

$$
\downarrow \qquad \qquad \downarrow
$$

$$
\mu \geq 0 \qquad \qquad \langle \mu, 1 \rangle = 1
$$

3/12

Admissible paths: $(b_t)_t \in \mathcal{H}^1([0,1], \mathcal{H}_c)$ valued in \mathcal{B} .

Definition. With H_c the Riesz isometry $\mathcal{H}_c^* \to \mathcal{H}_c$,

$$
B(\mu) \coloneqq H_c\left[\exp\left(\frac{f_\mu}{\varepsilon}\right)\mu\right] = \exp\left(-\frac{f_\mu}{\varepsilon}\right).
$$

Theorem. The map B is a homeomorphism onto its image

$$
\mathcal{B} \coloneqq \boxed{H_c\left[\mathcal{M}_+(\mathcal{X})\right] \cap \left\{b \in \mathcal{H}_c \mid \|b\|_{\mathcal{H}_c} = 1\right\} \atop \mu \geq 0 \quad \langle \mu, 1 \rangle = 1}
$$

3/12

Admissible paths: $(b_t)_t \in \mathcal{H}^1([0,1], \mathcal{H}_c)$ valued in \mathcal{B} .

Geodesic distance
$$
\mathbf{d}_S
$$
 defined by minimizing $\int_0^1 \tilde{\mathbf{g}}_{\mu_t} \left(\dot{b}_t, \dot{b}_t \right) dt$ over admissible paths.

Derivation of the equation

$$
\mu_{k+1}^{\tau} \in \underset{\mu \in \mathcal{P}(\mathcal{X})}{\arg \min} \langle \mu, V \rangle + \frac{1}{2\tau} S_{\varepsilon}(\mu, \mu_k^{\tau})
$$

Derivation of the equation

$$
\mu_{k+1}^{\tau} \in \underset{\mu \in \mathcal{P}(\mathcal{X})}{\arg \min} \langle \mu, V \rangle + \frac{1}{2\tau} S_{\varepsilon}(\mu, \mu_k^{\tau})
$$

Intuitively: asymptotic equivalence with

$$
\mu_{k+1}^{\tau} \in \underset{\mu \in \mathcal{P}(\mathcal{X})}{\arg \min} \langle \mu, V \rangle + \frac{1}{2\tau} \langle \mu - \mu_k^{\tau}, G_{\mu_k}(\mu - \mu_k^{\tau}) \rangle
$$
$$
\mu_{k+1}^{\tau} \in \underset{\mu \in \mathcal{P}(\mathcal{X})}{\arg \min} \langle \mu, V \rangle + \frac{1}{2\tau} S_{\varepsilon}(\mu, \mu_k^{\tau})
$$

Intuitively: asymptotic equivalence with

$$
\mu_{k+1}^{\mathrm{T}} \in \underset{\mu \in \mathcal{P}(\mathcal{X})}{\mathrm{arg\,min}} \langle \mu, V \rangle + \frac{1}{2\tau} \langle \mu - \mu_k^{\mathrm{T}}, G_{\mu_k}(\mu - \mu_k^{\mathrm{T}}) \rangle
$$

1st order conditions + formal limit:

$$
\begin{cases}\nG_{\mu_t} [\dot{\mu}_t] + V + p_t = 0 \\
p_t \le 0 \\
\langle \mu_t, p_t \rangle = 0 \\
\mu_t \in \mathcal{P}(\mathcal{X})\n\end{cases}
$$

Gradient flow of $\mu \mapsto \langle \mu, V \rangle$

$$
\mu_{k+1}^{\tau} \in \underset{\mu \in \mathcal{P}(\mathcal{X})}{\arg \min} \langle \mu, V \rangle + \frac{1}{2\tau} S_{\varepsilon}(\mu, \mu_k^{\tau})
$$

Intuitively: asymptotic equivalence with

$$
\mu_{k+1}^{\tau} \in \underset{\mu \in \mathcal{P}(\mathcal{X})}{\arg \min} \langle \mu, V \rangle + \frac{1}{2\tau} \langle \mu - \mu_k^{\tau}, G_{\mu_k}(\mu - \mu_k^{\tau}) \rangle
$$

1st order conditions $+$ formal limit:

$$
\begin{cases}\nG_{\mu_t}[\dot{\mu}_t] + V + p_t = 0 \\
p_t \le 0 \\
\langle \mu_t, p_t \rangle = 0 \\
\mu_t \in \mathcal{P}(\mathcal{X})\n\end{cases}
$$
embedding in \mathcal{B}
Gradient flow of $\mu \mapsto \langle \mu, V \rangle$ \longrightarrow Gradient flow of $b \mapsto \langle b, Vb \rangle_{\mathcal{H}_c}$

$$
\mu_{k+1}^{\tau} \in \underset{\mu \in \mathcal{P}(\mathcal{X})}{\arg \min} \langle \mu, V \rangle + \frac{1}{2\tau} S_{\varepsilon}(\mu, \mu_k^{\tau})
$$

Intuitively: asymptotic equivalence with

$$
\mu_{k+1}^{\mathrm{T}} \in \underset{\mu \in \mathcal{P}(\mathcal{X})}{\mathrm{arg\,min}} \langle \mu, V \rangle + \frac{1}{2\tau} \langle \mu - \mu_k^{\mathrm{T}}, G_{\mu_k}(\mu - \mu_k^{\mathrm{T}}) \rangle
$$

1st order conditions + formal limit:

$$
\begin{cases}\nG_{\mu_t}[\dot{\mu}_t] + V + p_t = 0 \\
p_t \leq 0 \\
\langle \mu_t, p_t \rangle = 0 \\
\mu_t \in \mathcal{P}(\mathcal{X})\n\end{cases}\n\xrightarrow{\begin{cases}\n\tilde{G}_{\mu_t}\dot{b}_t + (V + V^*)b_t + p_t = 0 \\
p_t \leq 0 \\
\langle H_c^{-1}b_t, p_t \rangle = 0 \\
b_t \in \mathcal{B}\n\end{cases}
$$
\nGradient flow of $\mu \mapsto \langle \mu, V \rangle$ \n
$$
\longrightarrow \text{Gradient flow of } b \mapsto \langle b, Vb \rangle_{\mathcal{H}_c}
$$

$$
\mu_{k+1}^{\tau} \in \underset{\mu \in \mathcal{P}(\mathcal{X})}{\arg \min} \langle \mu, V \rangle + \frac{1}{2\tau} S_{\varepsilon}(\mu, \mu_k^{\tau})
$$

Intuitively: asymptotic equivalence with

$$
\mu_{k+1}^{\mathrm{T}} \in \underset{\mu \in \mathcal{P}(\mathcal{X})}{\arg \min} \langle \mu, V \rangle + \frac{1}{2\tau} \langle \mu - \mu_k^{\mathrm{T}}, G_{\mu_k}(\mu - \mu_k^{\mathrm{T}}) \rangle
$$

1st order conditions + formal limit:

$$
\begin{cases}\nG_{\mu_t}[\dot{\mu}_t] + V + p_t = 0 \\
p_t \leq 0 \\
\langle \mu_t, p_t \rangle = 0 \\
\mu_t \in \mathcal{P}(\mathcal{X})\n\end{cases}\n\xrightarrow{\begin{cases}\n\tilde{G}_{\mu_t}\dot{b}_t + (V + V^*)b_t + p_t = 0 \\
p_t \leq 0 \\
\langle H_c^{-1}b_t, p_t \rangle = 0 \\
b_t \in \mathcal{B}\n\end{cases}
$$
\nGradient flow of $\mu \mapsto \langle \mu, V \rangle$ \n
$$
\longrightarrow \text{Gradient flow of } b \mapsto \langle b, Vb \rangle_{\mathcal{H}_c}
$$

$$
\underbrace{\bigwedge\limits_{\mathcal{C}}\bigwedge\limits_{\mathcal{C}}\underbrace{\tilde{G}_{\mu_t}\dot{b}_t}_{\mathcal{C}\mathcal{H}_c} + \underbrace{Vb_t}_{\mathcal{C}\mathcal{C}(\mathcal{X})} + \underbrace{V^*b_t}_{\mathcal{C}\mathcal{H}_c} + \underbrace{p_t}_{\mathcal{C}\mathcal{C}(\mathcal{X})} = 0
$$

4/12

$$
\mu_{k+1}^{\tau} \in \underset{\mu \in \mathcal{P}(\mathcal{X})}{\arg \min} \langle \mu, V \rangle + \frac{1}{2\tau} S_{\varepsilon}(\mu, \mu_k^{\tau})
$$

Intuitively: asymptotic equivalence with

$$
\mu_{k+1}^{\mathrm{T}} \in \underset{\mu \in \mathcal{P}(\mathcal{X})}{\mathrm{arg\,min}} \langle \mu, V \rangle + \frac{1}{2\tau} \langle \mu - \mu_k^{\mathrm{T}}, G_{\mu_k}(\mu - \mu_k^{\mathrm{T}}) \rangle
$$

1st order conditions + formal limit:

$$
\begin{cases}\nG_{\mu_t}[\dot{\mu}_t] + V + p_t = 0 \\
p_t \le 0 \\
\langle \mu_t, p_t \rangle = 0 \\
\mu_t \in \mathcal{P}(\mathcal{X})\n\end{cases}\n\quad\n\text{embedding in } \mathcal{B}\n\quad\n\begin{cases}\n\tilde{G}_{\mu_t} \dot{b}_t + (V + V^*)b_t + p_t = 0 \\
p_t \le 0 \\
\langle H_c^{-1} b_t, p_t \rangle = 0 \\
b_t \in \mathcal{B}\n\end{cases}
$$
\nGradient flow of $\mu \mapsto \langle \mu, V \rangle$ \n
$$
\xrightarrow{\text{Gradient flow of } \mu \mapsto \langle \mu, V \rangle} \xrightarrow{\text{Gradient flow of } b \mapsto \langle b, Vb \rangle_{\mathcal{H}_c}} \text{Gradient flow of } b \mapsto \langle h, Vb \rangle_{\mathcal{H}_c}
$$
\n
$$
= \langle H_c^{-1} b, Vb \rangle
$$
\n
$$
\xrightarrow{\text{Effect.}} \tilde{G}(\mathcal{X})\n\quad\n\begin{cases}\n\tilde{G}_{\mu_t} \dot{b}_t + \underbrace{Vb_t}_{\in \mathcal{C}(\mathcal{X})} + \underbrace{V^*b_t}_{\in \mathcal{H}_c} + \underbrace{p_t}_{\in \mathcal{C}(\mathcal{X})} = 0 \\
&\text{4/12}\n\end{cases}
$$

Sinkhorn Potential Flow:

$$
(b_t)_t \in \mathcal{H}^1([0, +\infty), \mathcal{H}_c), \begin{cases} \tilde{G}_{\mu_t}b_t + (V + V^*)b_t + p_t = 0 \\ p_t \leq 0 \\ \langle H_c^{-1}b_t, p_t \rangle = 0 \\ b_t \in \mathcal{B} \end{cases}
$$

Sinkhorn Potential Flow:

$$
(b_t)_t \in \mathcal{H}^1([0,+\infty),\mathcal{H}_c), \begin{cases} \tilde{G}_{\mu_t} \dot{b}_t + (V+V^*)b_t + p_t = 0 \\ p_t \in \mathfrak{P}b_t \\ b_t \in \mathcal{B} \end{cases}
$$

Definition. For $b \in \mathcal{K} := H_c[\mathcal{M}_+(\mathcal{X})]$, we call $\mathfrak{P}b \coloneqq \{p \in \mathcal{C}(\mathcal{X}) \mid p \leq 0 \text{ and } \langle H_c^{-1}b, p \rangle = 0\}$

the set of pressure vectors at b.

Sinkhorn Potential Flow:

$$
(b_t)_t \in \mathcal{H}^1([0, +\infty), \mathcal{H}_c), \begin{cases} \tilde{G}_{\mu_t} \dot{b}_t + (V + V^*) b_t + p_t = 0 \\ p_t \in \mathfrak{P} b_t \\ b_t \in \mathcal{B} \end{cases}
$$

BEER AND STRAIGHTER Definition. For $b \in \mathcal{K} := H_c[\mathcal{M}_+(\mathcal{X})]$, we call \mathcal{K} $\mathfrak{P}b \coloneqq \{p \in \mathcal{C}(\mathcal{X}) \mid p \leq 0 \text{ and } \langle H_c^{-1}b, p \rangle = 0\}$ the set of pressure vectors at b.

Sinkhorn Potential Flow:

$$
(b_t)_t \in \mathcal{H}^1([0, +\infty), \mathcal{H}_c), \begin{cases} \tilde{G}_{\mu_t} \dot{b}_t + (V + V^*) b_t + p_t = 0 \\ p_t \in \mathfrak{P} b_t \\ b_t \in \mathcal{B} \end{cases}
$$

Definition. For $b \in \mathcal{K} := H_c[\mathcal{M}_+(\mathcal{X})]$, we call $\mathfrak{P}b \coloneqq \{p \in \mathcal{C}(\mathcal{X}) \mid p \leq 0 \text{ and } \langle H_c^{-1}b, p \rangle = 0\}$ the set of pressure vectors at b.

Sinkhorn Potential Flow:

$$
(b_t)_t \in \mathcal{H}^1([0, +\infty), \mathcal{H}_c), \begin{cases} \tilde{G}_{\mu_t} \dot{b}_t + (V + V^*) b_t + p_t = 0 \\ p_t \in \mathfrak{P} b_t \\ b_t \in \mathcal{B} \end{cases}
$$

Definition. For $b \in \mathcal{K} := H_c[\mathcal{M}_+(\mathcal{X})]$, we call $\mathfrak{P}b \coloneqq \{p \in \mathcal{C}(\mathcal{X}) \mid p \leq 0 \text{ and } \langle H_c^{-1}b, p \rangle = 0\}$

the set of pressure vectors at b.

Proposition. Denote ι_K the convex indicator of K. Then for $b \in K$,

Sinkhorn Potential Flow:

$$
(b_t)_t \in \mathcal{H}^1([0, +\infty), \mathcal{H}_c), \begin{cases} \tilde{G}_{\mu_t} \dot{b}_t + (V + V^*) b_t + p_t = 0 \\ p_t \in \mathfrak{P} b_t \\ b_t \in \mathcal{B} \end{cases}
$$

Definition. For $b \in \mathcal{K} \coloneqq H_c[\mathcal{M}_+(\mathcal{X})]$, we call $\mathfrak{P}b \coloneqq \{p \in \mathcal{C}(\mathcal{X}) \mid p \leq 0 \text{ and } \langle H_c^{-1}b, p \rangle = 0\}$

the set of pressure vectors at b.

Proposition. Denote $\iota_{\mathcal{K}}$ the convex indicator of \mathcal{K} . Then for $b \in \mathcal{K}$, (a) $\partial \iota_K(b) = \mathcal{H}_c \cap \mathfrak{B}b$

Sinkhorn Potential Flow:

$$
(b_t)_t \in \mathcal{H}^1([0, +\infty), \mathcal{H}_c), \begin{cases} \tilde{G}_{\mu_t} \dot{b}_t + (V + V^*) b_t + p_t = 0 \\ p_t \in \mathfrak{P} b_t \\ b_t \in \mathcal{B} \end{cases}
$$

Definition. For $b \in \mathcal{K} \coloneqq H_c[\mathcal{M}_+(\mathcal{X})]$, we call $\mathfrak{P}b \coloneqq \{p \in \mathcal{C}(\mathcal{X}) \mid p \leq 0 \text{ and } \langle H_c^{-1}b, p \rangle = 0\}$

the set of pressure vectors at b.

Proposition. Denote $\iota_{\mathcal{K}}$ the convex indicator of \mathcal{K} . Then for $b \in \mathcal{K}$, (a) $\partial \iota_{\mathcal{K}}(b) = \mathcal{H}_c \cap \mathfrak{P}_b$ (b) $\tilde{G}_{\mu}^{-1} \mathfrak{P} b = \mathfrak{P} b$

Sinkhorn Potential Flow:

$$
(b_t)_t \in \mathcal{H}^1([0, +\infty), \mathcal{H}_c), \begin{cases} \tilde{G}_{\mu_t} \dot{b}_t + (V + V^*) b_t + p_t = 0 \\ p_t \in \mathfrak{P} b_t \\ b_t \in \mathcal{B} \end{cases}
$$

Definition. For $b \in \mathcal{K} \coloneqq H_c[\mathcal{M}_+(\mathcal{X})]$, we call $\mathfrak{P}b \coloneqq \{p \in \mathcal{C}(\mathcal{X}) \mid p \leq 0 \text{ and } \langle H_c^{-1}b, p \rangle = 0\}$

the set of pressure vectors at b.

Proposition. Denote ι_K the convex indicator of K. Then for $b \in K$, (a) $\partial \iota_K(b) = \mathcal{H}_c \cap \mathfrak{B}b$ (b) $\tilde{G}_{\mu}^{-1} \mathfrak{P} b = \mathfrak{P} b$ (c) $\tilde{G}_{\mu}^{-1}(V + V^*) = \frac{2}{\varepsilon}(V - V^*) =: \mathbf{W}$

Sinkhorn Potential Flow:

$$
(b_t)_t \in \mathcal{H}^1([0, +\infty), \mathcal{H}_c), \begin{cases} \dot{b}_t + \mathbf{W}b_t + p_t = 0\\ p_t \in \mathfrak{P}b_t\\ b_t \in \mathcal{B} \end{cases}
$$

Definition. For $b \in \mathcal{K} \coloneqq H_c[\mathcal{M}_+(\mathcal{X})]$, we call $\mathfrak{P}b \coloneqq \{p \in \mathcal{C}(\mathcal{X}) \mid p \leq 0 \text{ and } \langle H_c^{-1}b, p \rangle = 0\}$

the set of pressure vectors at b.

Proposition. Denote ι_K the convex indicator of K. Then for $b \in K$, (a) $\partial \iota_K(b) = \mathcal{H}_c \cap \mathfrak{B}b$ (b) $\tilde{G}_{\mu}^{-1} \mathfrak{P} b = \mathfrak{P} b$ (c) $\tilde{G}_{\mu}^{-1}(V + V^*) = \frac{2}{\varepsilon}(V - V^*) =: \mathbf{W}$

Sinkhorn Potential Flow:

$$
(b_t)_t \in \mathcal{H}^1([0, +\infty), \mathcal{H}_c), \begin{cases} \dot{b}_t + \mathbf{W}b_t + p_t = 0\\ p_t \in \mathfrak{P}b_t\\ b_t \in \mathcal{B} \end{cases}
$$

Definition. For $b \in \mathcal{K} := H_c[\mathcal{M}_+(\mathcal{X})]$, we call $\mathfrak{P}b \coloneqq \{p \in \mathcal{C}(\mathcal{X}) \mid p \leq 0 \text{ and } \langle H_c^{-1}b, p \rangle = 0\}$

the set of pressure vectors at b.

Proposition. Denote $\iota_{\mathcal{K}}$ the convex indicator of \mathcal{K} . Then for $b \in \mathcal{K}$, (a) $\partial \iota_K(b) = \mathcal{H}_c \cap \mathfrak{B}b$ (b) $\tilde{G}_{\mu}^{-1} \mathfrak{P} b = \mathfrak{P} b$ (c) $\tilde{G}_{\mu}^{-1}(V + V^*) = \frac{2}{\varepsilon}(V - V^*) =: \mathbf{W}$

Sinkhorn Potential Flow:

$$
(b_t)_t \in \mathcal{H}^1([0, +\infty), \mathcal{H}_c), \begin{cases} \dot{b}_t + \mathbf{W}b_t + p_t = 0\\ p_t \in \mathfrak{P}b_t\\ b_t \in \mathcal{B} \end{cases}
$$

Definition. For $b \in \mathcal{K} := H_c[\mathcal{M}_+(\mathcal{X})]$, we call $\mathfrak{P}b \coloneqq \{p \in \mathcal{C}(\mathcal{X}) \mid p \leq 0 \text{ and } \langle H_c^{-1}b, p \rangle = 0\}$

the set of pressure vectors at b.

Proposition. Denote $\iota_{\mathcal{K}}$ the convex indicator of \mathcal{K} . Then for $b \in \mathcal{K}$, (a) $\partial \iota_K(b) = \mathcal{H}_c \cap \mathfrak{B}b$ (b) $\tilde{G}_{\mu}^{-1} \mathfrak{P} b = \mathfrak{P} b$ (c) $\tilde{G}_{\mu}^{-1}(V + V^*) = \frac{2}{\varepsilon}(V - V^*) =: \mathbf{W}$

Antisymmetric: generates rotational motion!

Numerics on the 3-point space

- --- Boundary of $\mathcal B$
- Theoretical rotation lines
- SJKO Flow (embedded)
	- Potential energy $\langle H_c^{-1}b, Vb \rangle$

Proposition. If $(x_t)_t \subset \mathcal{X}$ is a smooth trajectory and $b_t = B(\delta_{x_t})$ then

 $\dot{b}_t + \mathbf{W}b_t + \mathfrak{B}b_t \ni 0 \iff \dot{x}_t \in -\partial V(x_t).$

Proposition. If $(x_t)_t \subset \mathcal{X}$ is a smooth trajectory and $b_t = B(\delta_{x_t})$ then $\dot{b}_t + \mathbf{W}b_t + \mathfrak{P}b_t \ni 0 \iff \dot{x}_t \in -\partial V(x_t).$

PROOF: Direct computations.

Proposition. If $(x_t)_t \subset \mathcal{X}$ is a smooth trajectory and $b_t = B(\delta_{x_t})$ then $\dot{b}_t + \mathbf{W}b_t + \mathfrak{B}b_t \ni 0 \iff \dot{x}_t \in -\partial V(x_t).$

PROOF: Direct computations.

Corollary. For V convex and any $x_0 \in \mathcal{X}$, the Sinkhorn potential flow starting at $b_0 =$ $B(\delta_{x_0})$ is given by $B(\delta_{x_t})$ with $(x_t)_t$ the subgradient flow of V.

Proposition. If $(x_t)_t \subset \mathcal{X}$ is a smooth trajectory and $b_t = B(\delta_{x_t})$ then

 $\dot{b}_t + \mathbf{W}b_t + \mathfrak{B}b_t \ni 0 \iff \dot{x}_t \in -\partial V(x_t).$

PROOF: Direct computations.

Corollary. For V convex and any $x_0 \in \mathcal{X}$, the Sinkhorn potential flow starting at $b_0 =$ $B(\delta_{x_0})$ is given by $B(\delta_{x_t})$ with $(x_t)_t$ the subgradient flow of V.

7/12

1. The Riemannian Geometry of S_{ε} 2. The equation and its structure 3. Well posedness and properties \vert 4. Convergence of the SJKO scheme $\overline{P}(\overline{\mathcal{X}})$ b^1_t b_t^2 t E $E_{\rm min}$ −−−→τ→⁰ Plan

Theorem. There exists a unique Sinkhorn potential flow $(b_t)_t$ starting at $b^0 \in \mathcal{B}$ which additionally verifies

Theorem. There exists a unique Sinkhorn potential flow $(b_t)_t$ starting at $b^0 \in \mathcal{B}$ which additionally verifies

(a) The norm $\left\| \dot{b}_t \right\|_{\mathcal{H}_c}$ decreases.

Theorem. There exists a unique Sinkhorn potential flow $(b_t)_t$ starting at $b^0 \in \mathcal{B}$ which additionally verifies

(a) The norm
$$
\left\| \dot{b}_t \right\|_{\mathcal{H}_c}
$$
 decreases.

Moreover,

(b) The flow is contractive i.e. two flows b^1 , b^2 have decreasing $||b_t^1 - b_t^2||_{\mathcal{H}_c}$.

Theorem. There exists a unique Sinkhorn potential flow $(b_t)_t$ starting at $b^0 \in \mathcal{B}$ which additionally verifies

(a) The norm
$$
\left\| \dot{b}_t \right\|_{\mathcal{H}_c}
$$
 decreases.

Moreover,

(b) The flow is contractive i.e. two flows
$$
b^1
$$
, b^2 have decreasing $||b_t^1 - b_t^2||_{\mathcal{H}_c}$.

For
$$
\mathcal{X} = \{x_1, \ldots, x_n\}
$$
, $\mathcal{C}(\mathcal{X}) = \mathcal{H}_c = \mathbb{R}^n$

Theorem. There exists a unique Sinkhorn potential flow $(b_t)_t$ starting at $b^0 \in \mathcal{B}$ which additionally verifies (a) Th decreases.

The norm
$$
\left\| \dot{b}_t \right\|_{\mathcal{H}_c}
$$
 de

Moreover,

(b) The flow is contractive i.e. two flows
$$
b^1
$$
, b^2 have decreasing $||b_t^1 - b_t^2||_{\mathcal{H}_c}$.

For
$$
\mathcal{X} = \{x_1, \ldots, x_n\}
$$
, $\mathcal{C}(\mathcal{X}) = \mathcal{H}_c = \mathbb{R}^n$

 \rightarrow **W** antisymmetric, continuous $\mathcal{H}_c \rightarrow \mathcal{H}_c$ and $\mathfrak{P} = \partial \iota_{\mathcal{K}}$,

Theorem. There exists a unique Sinkhorn potential flow $(b_t)_t$ starting at $b^0 \in \mathcal{B}$ which additionally verifies (a) eases.

The norm
$$
\left\| \dot{b}_t \right\|_{\mathcal{H}_c}
$$
 decr

Moreover,

(b) The flow is contractive i.e. two flows
$$
b^1
$$
, b^2 have decreasing $||b_t^1 - b_t^2||_{\mathcal{H}_c}$.

For
$$
\mathcal{X} = \{x_1, \ldots, x_n\}
$$
, $\mathcal{C}(\mathcal{X}) = \mathcal{H}_c = \mathbb{R}^n$

 \rightarrow **W** antisymmetric, continuous $\mathcal{H}_c \rightarrow \mathcal{H}_c$ and $\mathfrak{P} = \partial \iota_{\mathcal{K}}$,

 $\rightarrow W + \mathfrak{B}$ maximal monotone (gives contractivity),

Theorem. There exists a unique Sinkhorn potential flow $(b_t)_t$ starting at $b^0 \in \mathcal{B}$ which additionally verifies (a) eases.

The norm
$$
\left\| \dot{b}_t \right\|_{\mathcal{H}_c}
$$
 decre

Moreover,

(b) The flow is contractive i.e. two flows b^1 , b^2 have decreasing $||b_t^1 - b_t^2||_{\mathcal{H}_c}$.

For
$$
\mathcal{X} = \{x_1, \ldots, x_n\}
$$
, $\mathcal{C}(\mathcal{X}) = \mathcal{H}_c = \mathbb{R}^n$

 \rightarrow **W** antisymmetric, continuous $\mathcal{H}_c \rightarrow \mathcal{H}_c$ and $\mathfrak{P} = \partial \iota_K$,

 $\rightarrow W + \mathfrak{B}$ maximal monotone (gives contractivity),

 \rightarrow We can use the Hille-Yosida theorem.

Theorem. There exists a unique Sinkhorn potential flow $(b_t)_t$ starting at $b^0 \in \mathcal{B}$ which additionally verifies $\overline{\mathbf{s}}$.

(a) The norm
$$
\left\| \dot{b}_t \right\|_{\mathcal{H}_c}
$$
 decrease

Moreover,

(b) The flow is contractive i.e. two flows
$$
b^1
$$
, b^2 have decreasing $||b_t^1 - b_t^2||_{\mathcal{H}_c}$.

For
$$
\mathcal{X} = \{x_1, \ldots, x_n\}
$$
, $\mathcal{C}(\mathcal{X}) = \mathcal{H}_c = \mathbb{R}^n$

 \rightarrow **W** antisymmetric, continuous $\mathcal{H}_c \rightarrow \mathcal{H}_c$ and $\mathfrak{P} = \partial \iota_{\mathcal{K}}$,

 \rightarrow **W** + \mathfrak{P} maximal monotone (gives contractivity),

 \rightarrow We can use the Hille-Yosida theorem.

Then, use classical compactness results and verify that the limit $n \to \infty$ verifies the equation.

Theorem. There exists a unique Sinkhorn potential flow $(b_t)_t$ starting at $b^0 \in \mathcal{B}$ which additionally verifies $\|\cdot\|$ $\overline{\mathbf{s}}$.

(a) The norm
$$
\left\| \dot{b}_t \right\|_{\mathcal{H}_c}
$$
 decrease

Moreover,

(b) The flow is contractive i.e. two flows
$$
b^1
$$
, b^2 have decreasing $||b_t^1 - b_t^2||_{\mathcal{H}_c}$.

For
$$
\mathcal{X} = \{x_1, \ldots, x_n\}
$$
, $\mathcal{C}(\mathcal{X}) = \mathcal{H}_c = \mathbb{R}^n$

 \rightarrow **W** antisymmetric, continuous $\mathcal{H}_c \rightarrow \mathcal{H}_c$ and $\mathfrak{P} = \partial \iota_{\mathcal{K}}$,

 \rightarrow **W** + \mathfrak{B} maximal monotone (gives contractivity),

 \rightarrow We can use the Hille-Yosida theorem.

Then, use classical compactness results and verify that the limit $n \to \infty$ verifies the equation. The results hold for any $V \in C(\mathcal{X})!$

Theorem. Assume V has a unique minimizer x^* on \mathcal{X} .

Theorem. Assume V has a unique minimizer x^* on \mathcal{X} .

Theorem. Assume V has a unique minimizer x^* on \mathcal{X} . Then,

$$
b_t \xrightarrow[t \to \infty]{} b_{\min} \coloneqq B(\delta_{x^*})
$$

and thus

$$
\mu_t \xrightarrow[t \to \infty]{}^* \delta_{x^*}.
$$

Theorem. Assume V has a unique minimizer x^* on \mathcal{X} . Then,

$$
b_t \xrightarrow[t \to \infty]{} b_{\min} \coloneqq B(\delta_{x^*})
$$

and thus

$$
\mu_t \xrightarrow[t \to \infty]{}^* \delta_{x^*}.
$$

SKETCH OF PROOF:

 \mathcal{B} compact \implies convergent subsequences exist

Theorem. Assume V has a unique minimizer x^* on \mathcal{X} . Then,

$$
b_t \xrightarrow[t \to \infty]{} b_{\min} \coloneqq B(\delta_{x^*})
$$

and thus

$$
\mu_t \xrightarrow[t \to \infty]{}^* \delta_{x^*}.
$$

SKETCH OF PROOF:

- \mathcal{B} compact \implies convergent subsequences exist
- $\mathbf{b}_t \to 0$ and $\mathbf{W} + \mathfrak{B}$ closed \implies accumulation points are critical

Asymptotics

Theorem. Assume V has a unique minimizer x^* on \mathcal{X} . Then,

$$
b_t \xrightarrow[t \to \infty]{} b_{\min} \coloneqq B(\delta_{x^*})
$$

and thus

$$
\mu_t \xrightarrow[t \to \infty]{}^* \delta_{x^*}.
$$

SKETCH OF PROOF:

- \mathcal{B} compact \implies convergent subsequences exist
- $\mathbf{b}_t \to 0$ and $\mathbf{W} + \mathbf{\mathfrak{P}}$ closed \implies accumulation points are critical
- x^* is the unique minimizer \implies b_{\min} is the only critical point.

Asymptotics

Theorem. Assume V has a unique minimizer x^* on \mathcal{X} . Then,

$$
b_t \xrightarrow[t \to \infty]{} b_{\min} \coloneqq B(\delta_{x^*})
$$

and thus

$$
\mu_t \xrightarrow[t \to \infty]{}^* \delta_{x^*}.
$$

SKETCH OF PROOF:

- \mathcal{B} compact \implies convergent subsequences exist
- $\mathbf{b}_t \to 0$ and $\mathbf{W} + \mathfrak{B}$ closed \implies accumulation points are critical
- x^* is the unique minimizer \implies b_{\min} is the only critical point.

Because vertical perturbations are admissible for Sinkhorn!

 $10/12$

 $10/12$

 $10/12$

 4.5 $\overline{\mathbf{A}}$

 3.5 $\overline{3}$

2.5

 $\overline{2}$ 1.5

 $\mathbf 1$ 0.5

 \circ

 $10/12$

1. The Riemannian Geometry of S_{ε} 2. The equation and its structure 3. Well posedness and properties \vert 4. Convergence of the SJKO scheme $\overline{P}(\overline{\mathcal{X}})$ $\overline{\mathcal{B}}$ b 1 t b_t^2 t E $E_{\rm min}$ $\tau \rightarrow 0$ Plan

Theorem. On a finite space, with $(b_k^{\tau})_k$ given by the SJKO scheme after embedding, $\left(\overline{b}_{t}^{\pi}\right)$ $\begin{bmatrix} \tau \\ t \end{bmatrix}$, the piecewise constant interpolation, $(b_t^{\tau})_t$ the piecewise geodesic interpolation, then

$$
b^{\tau}, \overline{b}^{\tau} \xrightarrow[\tau \to 0]{} b
$$
 uniformly on $[0,T]$

with b the Sinkhorn potential flow of V starting at b_0 .

Theorem. On a finite space, with $(b_k^{\tau})_k$ given by the SJKO scheme after embedding, $\left(\overline{b}_{t}^{\pi}\right)$ $\begin{bmatrix} \tau \\ t \end{bmatrix}$, the piecewise constant interpolation, $(b_t^{\tau})_t$ the piecewise geodesic interpolation, then

$$
b^{\tau}, \overline{b}^{\tau} \xrightarrow[\tau \to 0]{} b
$$
 uniformly on $[0,T]$

with b the Sinkhorn potential flow of V starting at b_0 .

Sketch of proof:

Classical estimates and compactness yields a limit

Theorem. On a finite space, with $(b_k^{\tau})_k$ given by the SJKO scheme after embedding, $\left(\overline{b}_{t}^{\pi}\right)$ $\begin{bmatrix} \tau \\ t \end{bmatrix}$, the piecewise constant interpolation, $(b_t^{\tau})_t$ the piecewise geodesic interpolation, then

$$
b^{\tau}, \overline{b}^{\tau} \xrightarrow[\tau \to 0]{} b
$$
 uniformly on $[0,T]$

with b the Sinkhorn potential flow of V starting at b_0 .

- Classical estimates and compactness yields a limit
- Optimality condition of SJKO: $\frac{1}{2\tau}\left(f_{\mu_{k+1}^{\tau},\mu_{k}^{\tau}}-f_{\mu_{k+1}^{\tau}}\right)+V+p_{k+1}^{\tau}=0$

Theorem. On a finite space, with $(b_k^{\tau})_k$ given by the SJKO scheme after embedding, $\left(\overline{b}_{t}^{\pi}\right)$ $\begin{bmatrix} \tau \\ t \end{bmatrix}$, the piecewise constant interpolation, $(b_t^{\tau})_t$ the piecewise geodesic interpolation, then

$$
b^{\tau}, \overline{b}^{\tau} \xrightarrow[\tau \to 0]{} b
$$
 uniformly on $[0,T]$

with b the Sinkhorn potential flow of V starting at b_0 .

Sketch of proof:

- Classical estimates and compactness yields a limit
- Optimality condition of SJKO: $\frac{1}{2\tau}\left(f_{\mu_{k+1}^{\tau},\mu_{k}^{\tau}}-f_{\mu_{k+1}^{\tau}}\right)+V+p_{k+1}^{\tau}=0$

 $\frac{1}{2\tau}\left(f_{t,t-\tau}^{\tau}-f_{t,t}^{\tau}\right)$

Theorem. On a finite space, with $(b_k^{\tau})_k$ given by the SJKO scheme after embedding, $\left(\overline{b}_{t}^{\pi}\right)$ $\begin{bmatrix} \tau \\ t \end{bmatrix}$, the piecewise constant interpolation, $(b_t^{\tau})_t$ the piecewise geodesic interpolation, then

$$
b^{\tau}, \overline{b}^{\tau} \xrightarrow[\tau \to 0]{} b
$$
 uniformly on $[0,T]$

with b the Sinkhorn potential flow of V starting at b_0 .

- Classical estimates and compactness yields a limit
- Optimality condition of SJKO: $\frac{1}{2\tau}\left(f_{\mu_{k+1}^{\tau},\mu_{k}^{\tau}}-f_{\mu_{k+1}^{\tau}}\right)+V+p_{k+1}^{\tau}=0$

$$
\frac{1}{2\tau} \left(f_{t,t-\tau}^{\tau} - f_{t,t}^{\tau} \right) = -\frac{1}{2\tau} \int_{t-\tau}^{t} \frac{\partial f_{t,s}^{\tau}}{\partial s} ds
$$

Theorem. On a finite space, with $(b_k^{\tau})_k$ given by the SJKO scheme after embedding, $\left(\overline{b}_{t}^{\pi}\right)$ $\begin{bmatrix} \tau \\ t \end{bmatrix}$, the piecewise constant interpolation, $(b_t^{\tau})_t$ the piecewise geodesic interpolation, then

$$
b^{\tau}, \overline{b}^{\tau} \xrightarrow[\tau \to 0]{} b
$$
 uniformly on $[0,T]$

with b the Sinkhorn potential flow of V starting at b_0 .

Sketch of proof:

- Classical estimates and compactness yields a limit
- Optimality condition of SJKO: $\frac{1}{2\tau}\left(f_{\mu_{k+1}^{\tau},\mu_{k}^{\tau}}-f_{\mu_{k+1}^{\tau}}\right)+V+p_{k+1}^{\tau}=0$

$$
\frac{1}{2\tau} \left(f_{t,t-\tau}^{\tau} - f_{t,t}^{\tau} \right) = -\frac{1}{2\tau} \int_{t-\tau}^{t} \frac{\partial f_{t,s}^{\tau}}{\partial s} ds
$$

$$
\frac{1}{\tau \to 0} - \frac{1}{2} \frac{\partial f_{t,t}}{\partial t} = G_{\mu_t} \left[\dot{\mu}_t \right]
$$

11/12

Theorem. On a finite space, with $(b_k^{\tau})_k$ given by the SJKO scheme after embedding, $\left(\overline{b}_{t}^{\pi}\right)$ $\begin{bmatrix} \tau \\ t \end{bmatrix}$, the piecewise constant interpolation, $(b_t^{\tau})_t$ the piecewise geodesic interpolation, then

$$
b^{\tau}, \overline{b}^{\tau} \xrightarrow[\tau \to 0]{} b
$$
 uniformly on $[0,T]$

with b the Sinkhorn potential flow of V starting at b_0 .

Sketch of proof:

- Classical estimates and compactness yields a limit
- Optimality condition of SJKO: $\frac{1}{2\tau}\left(f_{\mu_{k+1}^{\tau},\mu_{k}^{\tau}}-f_{\mu_{k+1}^{\tau}}\right)+V+p_{k+1}^{\tau}=0$

$$
\frac{1}{2\tau} \left(f_{t,t-\tau}^{\tau} - f_{t,t}^{\tau} \right) = -\frac{1}{2\tau} \int_{t-\tau}^{t} \frac{\partial f_{t,s}^{\tau}}{\partial s} ds
$$
\n
$$
\frac{1}{\tau \to 0} - \frac{1}{2} \frac{\partial f_{t,t}}{\partial t} = G_{\mu_t} \left[\dot{\mu}_t \right]
$$

11/12

Theorem. On a finite space, with $(b_k^{\tau})_k$ given by the SJKO scheme after embedding, $\left(\overline{b}_{t}^{\pi}\right)$ $\begin{bmatrix} \tau \\ t \end{bmatrix}$, the piecewise constant interpolation, $(b_t^{\tau})_t$ the piecewise geodesic interpolation, then

$$
b^{\tau}, \overline{b}^{\tau} \xrightarrow[\tau \to 0]{} b
$$
 uniformly on $[0,T]$

with b the Sinkhorn potential flow of V starting at b_0 .

- Classical estimates and compactness yields a limit
- Optimality condition of SJKO: $\frac{1}{2\tau}\left(f_{\mu_{k+1}^{\tau},\mu_{k}^{\tau}}-f_{\mu_{k+1}^{\tau}}\right)+V+p_{k+1}^{\tau}=0$

$$
\frac{1}{2\tau} \left(f_{t,t-\tau}^{\tau} - f_{t,t}^{\tau} \right) = -\frac{1}{2\tau} \int_{t-\tau}^{t} \frac{\partial f_{t,s}^{\tau}}{\partial s} ds
$$
 Only valid in finite space !
In the general case, tangent spaces are incompatible.

$$
\frac{1}{\tau \to 0} - \frac{1}{2} \frac{\partial f_{t,t}}{\partial t} = G_{\mu_t} [\mu_t]
$$
 11/12

Theorem. On a finite space, with $(b_k^{\tau})_k$ given by the SJKO scheme after embedding, $\left(\overline{b}_{t}^{\pi}\right)$ $\begin{bmatrix} \tau \\ t \end{bmatrix}$, the piecewise constant interpolation, $(b_t^{\tau})_t$ the piecewise geodesic interpolation, then

$$
b^{\tau},\overline{b}^{\tau} \xrightarrow[\tau \to 0]{} b
$$
 uniformly on $[0,T]$

with b the Sinkhorn potential flow of V starting at b_0 .

Hope:

$$
SJKO_n \xrightarrow{\tau \to 0} \text{Flow}_n
$$

$$
\downarrow n \to \infty
$$
Flow

- Classical estimates and compactness yields a limit
- Optimality condition of SJKO: $\frac{1}{2\tau}\left(f_{\mu_{k+1}^{\tau},\mu_{k}^{\tau}}-f_{\mu_{k+1}^{\tau}}\right)+V+p_{k+1}^{\tau}=0$

$$
\frac{1}{2\tau} \left(f_{t,t-\tau}^{\tau} - f_{t,t}^{\tau} \right) = -\frac{1}{2\tau} \int_{t-\tau}^{t} \frac{\partial f_{t,s}^{\tau}}{\partial s} ds
$$
 Only valid in finite space !
In the general case, tangent spaces are incompatible.

$$
\frac{1}{\tau \to 0} - \frac{1}{2} \frac{\partial f_{t,t}}{\partial t} = G_{\mu_t} [\mu_t]
$$
 11/12

Theorem. On a finite space, with $(b_k^{\tau})_k$ given by the SJKO scheme after embedding, $\left(\overline{b}_{t}^{\pi}\right)$ $\begin{bmatrix} \tau \\ t \end{bmatrix}$, the piecewise constant interpolation, $(b_t^{\tau})_t$ the piecewise geodesic interpolation, then

$$
b^{\tau}, \overline{b}^{\tau} \xrightarrow[\tau \to 0]{} b
$$
 uniformly on $[0,T]$

with b the Sinkhorn potential flow of V starting at b_0 .

Hope:

$$
SJKO_n \xrightarrow[\tau \to 0]{\tau \to 0} \text{Flow}_n
$$

$$
\begin{array}{c}\n?_{?}^{1} & n \to \infty \\
\text{SJKO} \xrightarrow{?? \to} \text{Flow}\n\end{array}
$$

- Classical estimates and compactness yields a limit
- Optimality condition of SJKO: $\frac{1}{2\tau}\left(f_{\mu_{k+1}^{\tau},\mu_{k}^{\tau}}-f_{\mu_{k+1}^{\tau}}\right)+V+p_{k+1}^{\tau}=0$

$$
\frac{1}{2\tau} \left(f_{t,t-\tau}^{\tau} - f_{t,t}^{\tau} \right) = -\frac{1}{2\tau} \int_{t-\tau}^{t} \frac{\partial f_{t,s}^{\tau}}{\partial s} ds
$$
 Only valid in finite space !
In the general case, tangent spaces are incompatible.

$$
\frac{1}{\tau \to 0} - \frac{1}{2} \frac{\partial f_{t,t}}{\partial t} = G_{\mu_t} [\mu_t]
$$
 11/12

What we have seen:

 \blacksquare SJKO limit (valid for finite \mathcal{X}) after embedding is a constrained rotational motion

What we have seen:

- SJKO limit (valid for finite \mathcal{X}) after embedding is a constrained rotational motion
- The equation is well posed for any $V \in \mathcal{C}(\mathcal{X})$ and contractive

What we have seen:

- SJKO limit (valid for finite \mathcal{X}) after embedding is a constrained rotational motion
- The equation is well posed for any $V \in \mathcal{C}(\mathcal{X})$ and contractive
- \blacksquare The solution converges to the energy minimizer when it is unique, sometimes through "teleportation"

What we have seen:

- SJKO limit (valid for finite \mathcal{X}) after embedding is a constrained rotational motion
- The equation is well posed for any $V \in \mathcal{C}(\mathcal{X})$ and contractive
- The solution converges to the energy minimizer when it is unique, sometimes through "teleportation"

Future research directions:

Limit $\tau \to 0$ for any compact space

What we have seen:

- SJKO limit (valid for finite \mathcal{X}) after embedding is a constrained rotational motion
- The equation is well posed for any $V \in \mathcal{C}(\mathcal{X})$ and contractive
- The solution converges to the energy minimizer when it is unique, sometimes through "teleportation"

Future research directions:

- Limit $\tau \to 0$ for any compact space
- Quantitative asymptotics

What we have seen:

- SJKO limit (valid for finite \mathcal{X}) after embedding is a constrained rotational motion
- The equation is well posed for any $V \in \mathcal{C}(\mathcal{X})$ and contractive
- The solution converges to the energy minimizer when it is unique, sometimes through "teleportation"

Future research directions:

- Limit $\tau \to 0$ for any compact space
- Quantitative asymptotics
- Fokker-Planck case $(E(\mu) = \langle \mu, V \rangle + \int \log(\mu) d\mu$

What we have seen:

- SJKO limit (valid for finite \mathcal{X}) after embedding is a constrained rotational motion
- The equation is well posed for any $V \in \mathcal{C}(\mathcal{X})$ and contractive
- The solution converges to the energy minimizer when it is unique, sometimes through "teleportation"

Future research directions:

- Limit $\tau \to 0$ for any compact space
- Quantitative asymptotics
- Fokker-Planck case $(E(\mu) = \langle \mu, V \rangle + \int \log(\mu) d\mu$

Thank you for listening!

Appendix

$$
\frac{\partial f_{t,s}}{\partial s} = -\varepsilon \left(\text{Id} - K_{t,s} K_{s,t} \right)^{-1} H_{t,s} \left[\dot{\mu}_s \right]
$$

$$
\frac{\partial f_{t,s}}{\partial s} = -\varepsilon \left(\text{Id} - K_{t,s} K_{s,t} \right)^{-1} H_{t,s} \left[\dot{\mu}_s \right] \in \mathcal{H}_{\mu_s,0}^*
$$

$$
\frac{\partial f_{t,s}}{\partial s} = -\varepsilon \left(\mathrm{Id} - K_{t,s} K_{s,t} \right)^{-1} \mathbf{H}_{t,s} \left[\mu_s \right] \in \mathcal{H}_{\mu_s,0}^*
$$

$$
\mathcal{H}_{\mu_t,\mu_s}^* \to \mathcal{H}_{\mu_t,\mu_s}
$$

where
$$
\mathcal{H}_{\mu,\nu} \coloneqq \exp\left(\frac{f_{\mu,\nu}}{\varepsilon}\right) \mathcal{H}_c
$$

$$
\frac{\partial f_{t,s}}{\partial s} = -\varepsilon \left(\mathrm{Id} - K_{t,s} K_{s,t} \right)^{-1} \mathbf{H}_{t,s} \left[\mu_s \right] \in \mathcal{H}_{\mu_s,0}^*
$$

$$
\mathcal{H}_{\mu_t,\mu_s}^* \to \mathcal{H}_{\mu_t,\mu_s}
$$

where
$$
\mathcal{H}_{\mu,\nu} \coloneqq \exp\left(\frac{f_{\mu,\nu}}{\varepsilon}\right) \mathcal{H}_c
$$

^{*}_{$\mu_s,0$} But generally speaking $\mathcal{H}_{\mu_s,0}^* \not\subset \mathcal{H}_{\mu_t,\mu_s}^*$!

Finite space case

Theorem. On a finite space, the differential inclusion

$$
\begin{cases} \n\dot{b}_t + \mathbf{W}b_t + p_t = 0\\ \np_t \in \partial \iota_{\mathcal{K}}(b_t) \\ \nb_t \in \mathcal{B} \n\end{cases}
$$

n
Danmaranin<mark>g</mark>
Danmaranin<mark>g</mark>

 $-p$

 $\mathbf{W}b_t$

has a solution that additionally verifies

(a)
$$
p_t = \operatorname*{arg\,min}_{p \in \partial t_k(b_t)} \|\mathbf{W} b_t + p\|_{\mathcal{H}_c}
$$

\n(b) $\frac{d}{dt} E(b_t) = -\tilde{\mathbf{g}}_{\mu_t} (b_t, b_t) \implies \begin{cases} (E(b_t))_t \text{ decreases} \\ \int_0^T \left\| \dot{b}_t \right\|_{\mathcal{H}_c} dt \text{ bounded} \end{cases}$
\n(c) $\left\| b_t \right\|_{\mathcal{H}_c}$ decreases.
\nThe flow is contractive.