



Università Commerciale Luigi Bocconi

## Gradient Flows in the Geometry of the Sinkhorn Divergence

Mathis Hardion

10/10/2024

# Wasserstein JKO: $\mu_{k+1}^{\tau} \in \underset{\mu \in \mathcal{P}(\mathcal{X})}{\operatorname{arg\,min}} E(\mu) + \frac{1}{2\tau} W_2(\mu, \mu_k^{\tau})^2$

Wasserstein JKO:  $\mu_{k+1}^{\tau} \in \underset{\mu \in \mathcal{P}(\mathcal{X})}{\operatorname{arg\,min}} E(\mu) + \frac{1}{2\tau} W_2(\mu, \mu_k^{\tau})^2$ as  $\tau \to 0$ :  $\begin{cases} E(\mu) = \int_{\mathcal{X}} \log(\mu) \, d\mu \to \dot{\mu}_t = \Delta \mu_t \end{cases}$ 

Wasserstein JKO:  $\mu_{k+1}^{\tau} \in \underset{\mu \in \mathcal{P}(\mathcal{X})}{\arg\min} E(\mu) + \frac{1}{2\tau} W_2(\mu, \mu_k^{\tau})^2$ as  $\tau \to 0$ :  $\begin{cases} E(\mu) = \int_{\mathcal{X}} \log(\mu) \, d\mu \to \dot{\mu}_t = \Delta \mu_t \\ E(\mu) = \langle \mu, V \rangle \to \dot{\mu}_t = \operatorname{div}(\mu_t \nabla V) \end{cases}$ 

Wasserstein JKO:  $\mu_{k+1}^{\tau} \in \underset{\mu \in \mathcal{P}(\mathcal{X})}{\operatorname{arg\,min}} E(\mu) + \frac{1}{2\tau} W_2(\mu, \mu_k^{\tau})^2$ as  $\tau \to 0$ :  $\begin{cases} E(\mu) = \int_{\mathcal{X}} \log(\mu) \, d\mu \to \dot{\mu}_t = \Delta \mu_t \\ \hline E(\mu) = \langle \mu, V \rangle \to \dot{\mu}_t = \operatorname{div}(\mu_t \nabla V) \end{cases}$  Our focus  $(V \in \mathcal{C}(\mathcal{X})).$ 

Wasserstein JKO:  $\mu_{k+1}^{\tau} \in \underset{\mu \in \mathcal{P}(\mathcal{X})}{\arg\min} E(\mu) + \frac{1}{2\tau} W_2(\mu, \mu_k^{\tau})^2$ as  $\tau \to 0$ :  $\begin{cases} E(\mu) = \int_{\mathcal{X}} \log(\mu) \, d\mu \to \dot{\mu}_t = \Delta \mu_t \\ \hline E(\mu) = \langle \mu, V \rangle \to \dot{\mu}_t = \operatorname{div}(\mu_t \nabla V) \end{cases}$  Our focus  $(V \in \mathcal{C}(\mathcal{X})).$ 

But  $W_2^2$  is computationally expensive ...

Wasserstein JKO: 
$$\mu_{k+1}^{\tau} \in \underset{\mu \in \mathcal{P}(\mathcal{X})}{\arg\min} E(\mu) + \frac{1}{2\tau} W_2(\mu, \mu_k^{\tau})^2$$
  
as  $\tau \to 0$ : 
$$\begin{cases} E(\mu) = \int_{\mathcal{X}} \log(\mu) \, d\mu \to \dot{\mu}_t = \Delta \mu_t \\ \hline E(\mu) = \langle \mu, V \rangle \to \dot{\mu}_t = \operatorname{div}(\mu_t \nabla V) \end{cases}$$
 Our focus  $(V \in \mathcal{C}(\mathcal{X})).$ 

But  $W_2^2$  is computationally expensive ...

 $\vdash$  Use its entropic regularization  $OT_{\varepsilon}$  instead (Peyré, 2015).

Wasserstein JKO:  $\mu_{k+1}^{\tau} \in \underset{\mu \in \mathcal{P}(\mathcal{X})}{\arg\min} E(\mu) + \frac{1}{2\tau} W_2(\mu, \mu_k^{\tau})^2$ as  $\tau \to 0$ :  $\begin{cases} E(\mu) = \int_{\mathcal{X}} \log(\mu) \, d\mu \to \dot{\mu}_t = \Delta \mu_t \\ \hline E(\mu) = \langle \mu, V \rangle \to \dot{\mu}_t = \operatorname{div}(\mu_t \nabla V) \end{cases}$  Our focus  $(V \in \mathcal{C}(\mathcal{X})).$ 

But  $W_2^2$  is computationally expensive ...

 $\downarrow$  Use its entropic regularization  $OT_{\varepsilon}$  instead (Peyré, 2015).

Above PDEs are recovered when  $\varepsilon \ll \tau$  (Carlier et al., 2017), but it slows down convergence.

Wasserstein JKO:  $\mu_{k+1}^{\tau} \in \underset{\mu \in \mathcal{P}(\mathcal{X})}{\arg\min} E(\mu) + \frac{1}{2\tau} W_2(\mu, \mu_k^{\tau})^2$ as  $\tau \to 0$ :  $\begin{cases} E(\mu) = \int_{\mathcal{X}} \log(\mu) \, d\mu \to \dot{\mu}_t = \Delta \mu_t \\ \hline E(\mu) = \langle \mu, V \rangle \to \dot{\mu}_t = \operatorname{div}(\mu_t \nabla V) \end{cases}$  Our focus  $(V \in \mathcal{C}(\mathcal{X})).$ 

But  $W_2^2$  is computationally expensive ...

 $\downarrow$  Use its entropic regularization  $OT_{\varepsilon}$  instead (Peyré, 2015).

Above PDEs are recovered when  $\varepsilon \ll \tau$  (Carlier et al., 2017), but it slows down convergence.

For fixed  $\varepsilon > 0$ : OT<sub> $\varepsilon$ </sub> numerically accessible, smooth, better statistical properties (Genevay et al., 2018, 2019).

Wasserstein JKO:  $\mu_{k+1}^{\tau} \in \underset{\mu \in \mathcal{P}(\mathcal{X})}{\arg\min} E(\mu) + \frac{1}{2\tau} W_2(\mu, \mu_k^{\tau})^2$ as  $\tau \to 0$ :  $\begin{cases} E(\mu) = \int_{\mathcal{X}} \log(\mu) \, d\mu \to \dot{\mu}_t = \Delta \mu_t \\ \hline E(\mu) = \langle \mu, V \rangle \to \dot{\mu}_t = \operatorname{div}(\mu_t \nabla V) \end{cases}$  Our focus  $(V \in \mathcal{C}(\mathcal{X})).$ 

But  $W_2^2$  is computationally expensive ...

 $\downarrow$  Use its entropic regularization  $OT_{\varepsilon}$  instead (Peyré, 2015).

Above PDEs are recovered when  $\varepsilon \ll \tau$  (Carlier et al., 2017), but it slows down convergence.

For fixed  $\varepsilon > 0$ : OT<sub> $\varepsilon$ </sub> numerically accessible, smooth, better statistical properties (Genevay et al., 2018, 2019).

 $OT_{\varepsilon}(\mu,\mu) > 0 \dots$ 

Wasserstein JKO:  $\mu_{k+1}^{\tau} \in \underset{\mu \in \mathcal{P}(\mathcal{X})}{\operatorname{arg\,min}} E(\mu) + \frac{1}{2\tau} W_2(\mu, \mu_k^{\tau})^2$ as  $\tau \to 0$ :  $\begin{cases} E(\mu) = \int_{\mathcal{X}} \log(\mu) \, d\mu \to \dot{\mu}_t = \Delta \mu_t \\ \hline E(\mu) = \langle \mu, V \rangle \to \dot{\mu}_t = \operatorname{div}(\mu_t \nabla V) \end{cases}$  Our focus  $(V \in \mathcal{C}(\mathcal{X})).$ 

But  $W_2^2$  is computationally expensive ...

 $\downarrow$  Use its entropic regularization  $OT_{\varepsilon}$  instead (Peyré, 2015).

Above PDEs are recovered when  $\varepsilon \ll \tau$  (Carlier et al., 2017), but it slows down convergence.

For fixed  $\varepsilon > 0$ :  $OT_{\varepsilon}$  numerically accessible, smooth, better statistical properties (Genevay et al., 2018, 2019).

 $OT_{\varepsilon}(\mu,\mu) > 0 \dots \rightarrow use the debiased Sinkhorn Divergence.$ 

Wasserstein JKO:  $\mu_{k+1}^{\tau} \in \underset{\mu \in \mathcal{P}(\mathcal{X})}{\arg\min} E(\mu) + \frac{1}{2\tau} W_2(\mu, \mu_k^{\tau})^2$ as  $\tau \to 0$ :  $\begin{cases} E(\mu) = \int_{\mathcal{X}} \log(\mu) \, d\mu \to \dot{\mu}_t = \Delta \mu_t \\ \hline E(\mu) = \langle \mu, V \rangle \to \dot{\mu}_t = \operatorname{div}(\mu_t \nabla V) \end{cases}$  Our focus  $(V \in \mathcal{C}(\mathcal{X})).$ 

But  $W_2^2$  is computationally expensive ...

 $\downarrow$  Use its entropic regularization  $OT_{\varepsilon}$  instead (Peyré, 2015).

Above PDEs are recovered when  $\varepsilon \ll \tau$  (Carlier et al., 2017), but it slows down convergence.

For fixed  $\varepsilon > 0$ :  $OT_{\varepsilon}$  numerically accessible, smooth, better statistical properties (Genevay et al., 2018, 2019).

 $OT_{\varepsilon}(\mu,\mu) > 0 \dots \rightarrow use the debiased Sinkhorn Divergence.$ 

Sinkhorn JKO:  $\mu_{k+1}^{\tau} \in \underset{\mu \in \mathcal{P}(\mathcal{X})}{\operatorname{arg\,min}} E(\mu) + \frac{1}{2\tau} S_{\varepsilon}(\mu, \mu_{k}^{\tau}).$ 

Wasserstein JKO:  $\mu_{k+1}^{\tau} \in \underset{\mu \in \mathcal{P}(\mathcal{X})}{\arg\min} E(\mu) + \frac{1}{2\tau} W_2(\mu, \mu_k^{\tau})^2$ as  $\tau \to 0$ :  $\begin{cases} E(\mu) = \int_{\mathcal{X}} \log(\mu) \, d\mu \to \dot{\mu}_t = \Delta \mu_t \\ \hline E(\mu) = \langle \mu, V \rangle \to \dot{\mu}_t = \operatorname{div}(\mu_t \nabla V) \end{cases}$  Our focus  $(V \in \mathcal{C}(\mathcal{X})).$ 

But  $W_2^2$  is computationally expensive ...

 $\downarrow$  Use its entropic regularization  $OT_{\varepsilon}$  instead (Peyré, 2015).

Above PDEs are recovered when  $\varepsilon \ll \tau$  (Carlier et al., 2017), but it slows down convergence.

For fixed  $\varepsilon > 0$ :  $OT_{\varepsilon}$  numerically accessible, smooth, better statistical properties (Genevay et al., 2018, 2019).

 $OT_{\varepsilon}(\mu,\mu) > 0 \dots \rightarrow use the debiased Sinkhorn Divergence.$ 

Sinkhorn JKO:  $\mu_{k+1}^{\tau} \in \underset{\mu \in \mathcal{P}(\mathcal{X})}{\operatorname{arg\,min}} E(\mu) + \frac{1}{2\tau} S_{\varepsilon}(\mu, \mu_{k}^{\tau}).$ 

as  $\tau \to 0:\ref{eq:tau}$ 

Wasserstein JKO:  $\mu_{k+1}^{\tau} \in \underset{\mu \in \mathcal{P}(\mathcal{X})}{\arg\min} E(\mu) + \frac{1}{2\tau} W_2(\mu, \mu_k^{\tau})^2$ as  $\tau \to 0$ :  $\begin{cases} E(\mu) = \int_{\mathcal{X}} \log(\mu) \, d\mu \to \dot{\mu}_t = \Delta \mu_t \\ \hline E(\mu) = \langle \mu, V \rangle \to \dot{\mu}_t = \operatorname{div}(\mu_t \nabla V) \end{cases}$  Our focus  $(V \in \mathcal{C}(\mathcal{X})).$ 

But  $W_2^2$  is computationally expensive . . .

 $\downarrow$  Use its entropic regularization  $OT_{\varepsilon}$  instead (Peyré, 2015).

Above PDEs are recovered when  $\varepsilon \ll \tau$  (Carlier et al., 2017), but it slows down convergence.

For fixed  $\varepsilon > 0$ :  $OT_{\varepsilon}$  numerically accessible, smooth, better statistical properties (Genevay et al., 2018, 2019).

 $OT_{\varepsilon}(\mu,\mu) > 0 \dots \rightarrow use the debiased Sinkhorn Divergence.$ 

Sinkhorn JKO:  $\mu_{k+1}^{\tau} \in \underset{\mu \in \mathcal{P}(\mathcal{X})}{\operatorname{arg\,min}} E(\mu) + \frac{1}{2\tau} S_{\varepsilon}(\mu, \mu_{k}^{\tau}).$ 

as  $\tau \rightarrow 0$ :??  $\rightarrow$  We derive the equation, analyze its structure and properties.







Notation.

•  $k_c \coloneqq \exp\left(-\frac{c}{\varepsilon}\right)$  (assumed to be a universal kernel of RKHS  $\mathcal{H}_c$ ),

Notation.

- $k_c \coloneqq \exp\left(-\frac{c}{\varepsilon}\right)$  (assumed to be a universal kernel of RKHS  $\mathcal{H}_c$ ),
- $f_{\mu}$ : Schrödinger potential for  $OT_{\varepsilon}(\mu, \mu)$ ,

Notation.

- $k_c \coloneqq \exp\left(-\frac{c}{\varepsilon}\right)$  (assumed to be a universal kernel of RKHS  $\mathcal{H}_c$ ),
- $f_{\mu}$ : Schrödinger potential for  $OT_{\varepsilon}(\mu, \mu)$ ,
- $k_{\mu} := \exp\left(\frac{1}{\varepsilon}(f_{\mu} \oplus f_{\mu} c)\right)$ , of RKHS  $\mathcal{H}_{\mu}$ .

Notation.

- $k_c \coloneqq \exp\left(-\frac{c}{\varepsilon}\right)$  (assumed to be a universal kernel of RKHS  $\mathcal{H}_c$ ),
- $f_{\mu}$ : Schrödinger potential for  $OT_{\varepsilon}(\mu, \mu)$ ,
- $k_{\mu} := \exp\left(\frac{1}{\varepsilon}(f_{\mu} \oplus f_{\mu} c)\right)$ , of RKHS  $\mathcal{H}_{\mu}$ .

**Theorem.** Let  $\mu_t = \mu + t\dot{\mu}$  with  $\dot{\mu} \in \mathcal{M}_0(\mathcal{X})$  a signed balanced measure. Then

$$\frac{1}{t^2} S_{\varepsilon}(\mu, \mu_t) \xrightarrow[t \to 0]{} \langle \dot{\mu}, G_{\mu} \left[ \dot{\mu} \right] \rangle$$

Notation.

- $k_c \coloneqq \exp\left(-\frac{c}{\varepsilon}\right)$  (assumed to be a universal kernel of RKHS  $\mathcal{H}_c$ ),
- $f_{\mu}$ : Schrödinger potential for  $OT_{\varepsilon}(\mu, \mu)$ ,
- $k_{\mu} := \exp\left(\frac{1}{\varepsilon}(f_{\mu} \oplus f_{\mu} c)\right)$ , of RKHS  $\mathcal{H}_{\mu}$ .

**Theorem.** Let  $\mu_t = \mu + t\dot{\mu}$  with  $\dot{\mu} \in \mathcal{M}_0(\mathcal{X})$  a signed balanced measure. Then

$$\frac{1}{t^2} S_{\varepsilon}(\mu, \mu_t) \xrightarrow[t \to 0]{} \langle \dot{\mu}, G_{\mu} \left[ \dot{\mu} \right] \rangle \eqqcolon \mathbf{g}_{\mu}(\dot{\mu}, \dot{\mu}).$$

Notation.

- $k_c \coloneqq \exp\left(-\frac{c}{\varepsilon}\right)$  (assumed to be a universal kernel of RKHS  $\mathcal{H}_c$ ),
- $f_{\mu}$ : Schrödinger potential for  $OT_{\varepsilon}(\mu, \mu)$ ,
- $k_{\mu} \coloneqq \exp\left(\frac{1}{\varepsilon}(f_{\mu} \oplus f_{\mu} c)\right)$ , of RKHS  $\mathcal{H}_{\mu}$ .

**Theorem.** Let  $\mu_t = \mu + t\dot{\mu}$  with  $\dot{\mu} \in \mathcal{M}_0(\mathcal{X})$  a signed balanced measure. Then

$$\frac{1}{t^2} S_{\varepsilon}(\mu, \mu_t) \xrightarrow[t \to 0]{} \langle \dot{\mu}, G_{\mu} \left[ \dot{\mu} \right] \rangle \eqqcolon \mathbf{g}_{\mu}(\dot{\mu}, \dot{\mu}).$$

**Theorem.** The completion of  $\mathcal{M}_0(\mathcal{X})$  w.r.t.  $\mathbf{g}_{\mu}$  is  $\mathcal{H}^*_{\mu,0} \coloneqq \{\sigma \in \mathcal{H}^*_{\mu} \mid \langle \sigma, 1 \rangle = 0\}.$ 

Notation.

- $k_c \coloneqq \exp\left(-\frac{c}{\varepsilon}\right)$  (assumed to be a universal kernel of RKHS  $\mathcal{H}_c$ ),
- $f_{\mu}$ : Schrödinger potential for  $OT_{\varepsilon}(\mu, \mu)$ ,
- $k_{\mu} \coloneqq \exp\left(\frac{1}{\varepsilon}(f_{\mu} \oplus f_{\mu} c)\right)$ , of RKHS  $\mathcal{H}_{\mu}$ .

**Theorem.** Let  $\mu_t = \mu + t\dot{\mu}$  with  $\dot{\mu} \in \mathcal{M}_0(\mathcal{X})$  a signed balanced measure. Then

$$\frac{1}{t^2} S_{\varepsilon}(\mu, \mu_t) \xrightarrow[t \to 0]{} \langle \dot{\mu}, G_{\mu} \left[ \dot{\mu} \right] \rangle \eqqcolon \mathbf{g}_{\mu}(\dot{\mu}, \dot{\mu}).$$

**Theorem.** The completion of  $\mathcal{M}_0(\mathcal{X})$  w.r.t.  $\mathbf{g}_{\mu}$  is  $\mathcal{H}^*_{\mu,0} \coloneqq \{\sigma \in \mathcal{H}^*_{\mu} \mid \langle \sigma, 1 \rangle = 0\}.$ 

 $\, \rightarrowtail \,$  Includes vertical and horizontal perturbations for c quadratic cost.

Lavenant, Luckhardt, Mordant, Schmitzer, Tamanini. The Riemannian geometry of Sinkhorn divergences. (2024) 2/12

Notation.

- $k_c \coloneqq \exp\left(-\frac{c}{\varepsilon}\right)$  (assumed to be a universal kernel of RKHS  $\mathcal{H}_c$ ),
- $f_{\mu}$ : Schrödinger potential for  $OT_{\varepsilon}(\mu, \mu)$ ,
- $k_{\mu} \coloneqq \exp\left(\frac{1}{\varepsilon}(f_{\mu} \oplus f_{\mu} c)\right)$ , of RKHS  $\mathcal{H}_{\mu}$ .

**Theorem.** Let  $\mu_t = \mu + t\dot{\mu}$  with  $\dot{\mu} \in \mathcal{M}_0(\mathcal{X})$  a signed balanced measure. Then

$$\frac{1}{t^2} S_{\varepsilon}(\mu, \mu_t) \xrightarrow[t \to 0]{} \langle \dot{\mu}, G_{\mu} \left[ \dot{\mu} \right] \rangle \eqqcolon \mathbf{g}_{\mu}(\dot{\mu}, \dot{\mu}).$$

**Theorem.** The completion of  $\mathcal{M}_0(\mathcal{X})$  w.r.t.  $\mathbf{g}_{\mu}$  is  $\mathcal{H}^*_{\mu,0} \coloneqq \{\sigma \in \mathcal{H}^*_{\mu} \mid \langle \sigma, 1 \rangle = 0\}.$ 

 $\, \rightarrowtail \,$  Includes vertical and horizontal perturbations for c quadratic cost.

 $\mapsto \mathcal{H}_{\mu}$  depends on  $\mu \implies$  change of variables

Lavenant, Luckhardt, Mordant, Schmitzer, Tamanini. The Riemannian geometry of Sinkhorn divergences. (2024) 2/12

**Definition.** With  $H_c$  the Riesz isometry  $\mathcal{H}_c^* \to \mathcal{H}_c$ ,

$$B(\mu) \coloneqq H_c \left[ \exp \left( \frac{f_{\mu}}{\varepsilon} \right) \mu \right]$$

**Definition.** With  $H_c$  the Riesz isometry  $\mathcal{H}_c^* \to \mathcal{H}_c$ ,

$$B(\mu) \coloneqq H_c\left[\exp\left(\frac{f_{\mu}}{\varepsilon}\right)\mu\right] = \exp\left(-\frac{f_{\mu}}{\varepsilon}\right).$$

**Definition.** With  $H_c$  the Riesz isometry  $\mathcal{H}_c^* \to \mathcal{H}_c$ ,

$$B(\mu) \coloneqq H_c\left[\exp\left(\frac{f_{\mu}}{\varepsilon}\right)\mu\right] = \exp\left(-\frac{f_{\mu}}{\varepsilon}\right).$$

**Theorem.** The map B is a homeomorphism onto its image

$$\mathcal{B} \coloneqq H_c\left[\mathcal{M}_+(\mathcal{X})\right] \cap \left\{ b \in \mathcal{H}_c \mid \|b\|_{\mathcal{H}_c} = 1 \right\}$$



12

**Definition.** With  $H_c$  the Riesz isometry  $\mathcal{H}_c^* \to \mathcal{H}_c$ ,

$$B(\mu) \coloneqq H_c\left[\exp\left(\frac{f_{\mu}}{\varepsilon}\right)\mu\right] = \exp\left(-\frac{f_{\mu}}{\varepsilon}\right).$$

**Theorem.** The map B is a homeomorphism onto its image

$$\mathcal{B} \coloneqq \boxed{H_c \left[\mathcal{M}_+(\mathcal{X})\right]} \cap \left\{ b \in \mathcal{H}_c \mid \|b\|_{\mathcal{H}_c} = 1 \right\}$$
$$\downarrow \\ \mu \ge 0$$



12

**Definition.** With  $H_c$  the Riesz isometry  $\mathcal{H}_c^* \to \mathcal{H}_c$ ,

$$B(\mu) \coloneqq H_c\left[\exp\left(\frac{f_{\mu}}{\varepsilon}\right)\mu\right] = \exp\left(-\frac{f_{\mu}}{\varepsilon}\right).$$

**Theorem.** The map B is a homeomorphism onto its image

$$\mathcal{B} \coloneqq \boxed{H_c \left[\mathcal{M}_+(\mathcal{X})
ight]} \cap \underbrace{\left\{b \in \mathcal{H}_c \mid \|b\|_{\mathcal{H}_c} = 1
ight\}}_{\substack{\downarrow \\ \mu \ge 0}}$$



12

**Definition.** With  $H_c$  the Riesz isometry  $\mathcal{H}_c^* \to \mathcal{H}_c$ ,

$$B(\mu) \coloneqq H_c\left[\exp\left(\frac{f_{\mu}}{\varepsilon}\right)\mu\right] = \exp\left(-\frac{f_{\mu}}{\varepsilon}\right).$$

**Theorem.** The map B is a homeomorphism onto its image

$$\mathcal{B} \coloneqq \boxed{H_c \left[\mathcal{M}_+(\mathcal{X})\right]} \cap \underbrace{\left\{b \in \mathcal{H}_c \mid \|b\|_{\mathcal{H}_c} = 1\right\}}_{\substack{\downarrow \\ \mu \ge 0}}$$



**Definition.** With  $H_c$  the Riesz isometry  $\mathcal{H}_c^* \to \mathcal{H}_c$ ,

$$B(\mu) \coloneqq H_c\left[\exp\left(\frac{f_{\mu}}{\varepsilon}\right)\mu\right] = \exp\left(-\frac{f_{\mu}}{\varepsilon}\right).$$

**Theorem.** The map B is a homeomorphism onto its image

$$\mathcal{B} \coloneqq \boxed{H_c \left[\mathcal{M}_+(\mathcal{X})\right]} \cap \underbrace{\left\{b \in \mathcal{H}_c \mid \|b\|_{\mathcal{H}_c} = 1\right\}}_{\substack{\downarrow\\\mu \ge 0}}$$



**Definition.** With  $H_c$  the Riesz isometry  $\mathcal{H}_c^* \to \mathcal{H}_c$ ,

$$B(\mu) \coloneqq H_c\left[\exp\left(\frac{f_{\mu}}{\varepsilon}\right)\mu\right] = \exp\left(-\frac{f_{\mu}}{\varepsilon}\right).$$

**Theorem.** The map B is a homeomorphism onto its image



Admissible paths:  $(b_t)_t \in \mathscr{H}^1([0,1], \mathcal{H}_c)$  valued in  $\mathcal{B}$ .

**Definition.** With  $H_c$  the Riesz isometry  $\mathcal{H}_c^* \to \mathcal{H}_c$ ,

$$B(\mu) \coloneqq H_c\left[\exp\left(\frac{f_{\mu}}{\varepsilon}\right)\mu\right] = \exp\left(-\frac{f_{\mu}}{\varepsilon}\right).$$

**Theorem.** The map B is a homeomorphism onto its image



Admissible paths:  $(b_t)_t \in \mathscr{H}^1([0,1], \mathcal{H}_c)$  valued in  $\mathcal{B}$ .

Geodesic distance 
$$\mathsf{d}_S$$
 defined by minimizing  $\int_0^1 \tilde{\mathbf{g}}_{\mu_t} \left( \dot{b}_t, \dot{b}_t \right) dt$  over admissible paths.





Derivation of the equation

$$\mu_{k+1}^{\tau} \in \operatorname*{arg\,min}_{\mu \in \mathcal{P}(\mathcal{X})} \langle \mu, V \rangle + \frac{1}{2\tau} S_{\varepsilon}(\mu, \mu_{k}^{\tau})$$

## Derivation of the equation

$$\mu_{k+1}^{\tau} \in \operatorname*{arg\,min}_{\mu \in \mathcal{P}(\mathcal{X})} \langle \mu, V \rangle + \frac{1}{2\tau} S_{\varepsilon}(\mu, \mu_{k}^{\tau})$$

Intuitively: asymptotic equivalence with

$$\mu_{k+1}^{\tau} \in \operatorname*{arg\,min}_{\mu \in \mathcal{P}(\mathcal{X})} \langle \mu, V \rangle + \frac{1}{2\tau} \langle \mu - \mu_k^{\tau}, G_{\mu_k}(\mu - \mu_k^{\tau}) \rangle$$
$$\mu_{k+1}^{\tau} \in \operatorname*{arg\,min}_{\mu \in \mathcal{P}(\mathcal{X})} \langle \mu, V \rangle + \frac{1}{2\tau} S_{\varepsilon}(\mu, \mu_k^{\tau})$$

Intuitively: asymptotic equivalence with

$$\mu_{k+1}^{\tau} \in \operatorname*{arg\,min}_{\mu \in \mathcal{P}(\mathcal{X})} \langle \mu, V \rangle + \tfrac{1}{2\tau} \langle \mu - \mu_k^{\tau}, G_{\mu_k}(\mu - \mu_k^{\tau}) \rangle$$

1st order conditions + formal limit:

$$\begin{cases} G_{\mu_t} \left[ \dot{\mu}_t \right] + V + p_t = 0\\ p_t \leq 0\\ \langle \mu_t, p_t \rangle = 0\\ \mu_t \in \mathcal{P}(\mathcal{X}) \end{cases}$$

Gradient flow of  $\mu\mapsto \langle \mu,V\rangle$ 

$$\mu_{k+1}^{\tau} \in \operatorname*{arg\,min}_{\mu \in \mathcal{P}(\mathcal{X})} \langle \mu, V \rangle + \frac{1}{2\tau} S_{\varepsilon}(\mu, \mu_{k}^{\tau})$$

Intuitively: asymptotic equivalence with

$$\mu_{k+1}^{\tau} \in \operatorname*{arg\,min}_{\mu \in \mathcal{P}(\mathcal{X})} \langle \mu, V \rangle + \frac{1}{2\tau} \langle \mu - \mu_k^{\tau}, G_{\mu_k}(\mu - \mu_k^{\tau}) \rangle$$

$$\begin{cases} G_{\mu_t} [\dot{\mu}_t] + V + p_t = 0\\ p_t \leq 0\\ \langle \mu_t, p_t \rangle = 0\\ \mu_t \in \mathcal{P}(\mathcal{X}) & \text{embedding in } \mathcal{B} \end{cases}$$
  
Gradient flow of  $\mu \mapsto \langle \mu, V \rangle \longrightarrow$  Gradient flow of  $b \mapsto \langle b, Vb \rangle_{\mathcal{H}_c}$ 

$$\mu_{k+1}^{\tau} \in \operatorname*{arg\,min}_{\mu \in \mathcal{P}(\mathcal{X})} \langle \mu, V \rangle + \frac{1}{2\tau} S_{\varepsilon}(\mu, \mu_k^{\tau})$$

Intuitively: asymptotic equivalence with

$$\mu_{k+1}^{\tau} \in \operatorname*{arg\,min}_{\mu \in \mathcal{P}(\mathcal{X})} \langle \mu, V \rangle + \frac{1}{2\tau} \langle \mu - \mu_k^{\tau}, G_{\mu_k}(\mu - \mu_k^{\tau}) \rangle$$

$$\begin{cases} G_{\mu_t}[\dot{\mu}_t] + V + p_t = 0\\ p_t \leq 0\\ \langle \mu_t, p_t \rangle = 0\\ \mu_t \in \mathcal{P}(\mathcal{X}) \end{cases} \xrightarrow{\text{embedding in } \mathcal{B}} \begin{cases} \tilde{G}_{\mu_t}\dot{b}_t + (V + V^*)b_t + p_t = 0\\ p_t \leq 0\\ \langle H_c^{-1}b_t, p_t \rangle = 0\\ b_t \in \mathcal{B} \end{cases}$$
  
Gradient flow of  $\mu \mapsto \langle \mu, V \rangle \xrightarrow{\text{embedding in } \mathcal{B}} \qquad \text{Gradient flow of } b \mapsto \langle b, Vb \rangle_{\mathcal{H}_c}$ 

$$\mu_{k+1}^{\tau} \in \operatorname*{arg\,min}_{\mu \in \mathcal{P}(\mathcal{X})} \langle \mu, V \rangle + \frac{1}{2\tau} S_{\varepsilon}(\mu, \mu_k^{\tau})$$

Intuitively: asymptotic equivalence with

$$\mu_{k+1}^{\tau} \in \operatorname*{arg\,min}_{\mu \in \mathcal{P}(\mathcal{X})} \langle \mu, V \rangle + \frac{1}{2\tau} \langle \mu - \mu_k^{\tau}, G_{\mu_k}(\mu - \mu_k^{\tau}) \rangle$$

$$\begin{cases} G_{\mu_t}[\dot{\mu}_t] + V + p_t = 0\\ p_t \leq 0\\ \langle \mu_t, p_t \rangle = 0\\ \mu_t \in \mathcal{P}(\mathcal{X}) \end{cases} \xrightarrow{\text{embedding in } \mathcal{B}} \begin{cases} \tilde{G}_{\mu_t}\dot{b}_t + (V + V^*)b_t + p_t = 0\\ p_t \leq 0\\ \langle H_c^{-1}b_t, p_t \rangle = 0\\ b_t \in \mathcal{B} \end{cases}$$
  
Gradient flow of  $\mu \mapsto \langle \mu, V \rangle \xrightarrow{\text{embedding in } \mathcal{B}} \qquad \text{Gradient flow of } b \mapsto \langle b, Vb \rangle_{\mathcal{H}_c}$ 

$$\bigwedge \underbrace{\tilde{G}_{\mu t} \dot{b}_t}_{\in \mathcal{H}_c} + \underbrace{V b_t}_{\in \mathcal{C}(\mathcal{X})} + \underbrace{V^* b_t}_{\in \mathcal{H}_c} + \underbrace{p_t}_{\in \mathcal{C}(\mathcal{X})} = 0$$

$$\mu_{k+1}^{\tau} \in \operatorname*{arg\,min}_{\mu \in \mathcal{P}(\mathcal{X})} \langle \mu, V \rangle + \frac{1}{2\tau} S_{\varepsilon}(\mu, \mu_k^{\tau})$$

Intuitively: asymptotic equivalence with

$$\mu_{k+1}^{\tau} \in \operatorname*{arg\,min}_{\mu \in \mathcal{P}(\mathcal{X})} \langle \mu, V \rangle + \frac{1}{2\tau} \langle \mu - \mu_k^{\tau}, G_{\mu_k}(\mu - \mu_k^{\tau}) \rangle$$

$$\begin{cases} G_{\mu_t} [\dot{\mu}_t] + V + p_t = 0\\ p_t \leq 0\\ \langle \mu_t, p_t \rangle = 0\\ \mu_t \in \mathcal{P}(\mathcal{X}) \end{cases} \xrightarrow{\text{embedding in } \mathcal{B}} \begin{cases} \tilde{G}_{\mu_t} \dot{b}_t + (V + V^*) b_t + p_t = 0\\ p_t \leq 0\\ \langle H_c^{-1} b_t, p_t \rangle = 0\\ b_t \in \mathcal{B} \end{cases}$$
  
Gradient flow of  $\mu \mapsto \langle \mu, V \rangle \xrightarrow{\text{embedding in } \mathcal{B}} \qquad \text{Gradient flow of } b \mapsto \langle b, V b \rangle_{\mathcal{H}_c} = \langle H_c^{-1} b, V b \rangle$   
$$\underbrace{\hat{I}}_{\in \mathcal{H}_c} \underbrace{\tilde{G}_{\mu_t} \dot{b}_t}_{\in \mathcal{H}_c} + \underbrace{V b_t}_{\in \mathcal{H}_c} + \underbrace{V^* b_t}_{\in \mathcal{H}_c} + \underbrace{p_t}_{\in \mathcal{C}(\mathcal{X})} = 0 \end{cases}$$

Sinkhorn Potential Flow:

$$(b_t)_t \in \mathscr{H}^1([0,+\infty), \mathcal{H}_c), \begin{cases} \tilde{G}_{\mu_t}\dot{b}_t + (V+V^*)b_t + p_t = 0\\ p_t \leq 0\\ \langle H_c^{-1}b_t, p_t \rangle = 0\\ b_t \in \mathcal{B} \end{cases}$$

Sinkhorn Potential Flow:

$$(b_t)_t \in \mathscr{H}^1([0,+\infty), \mathcal{H}_c), \begin{cases} \tilde{G}_{\mu_t} \dot{b}_t + (V+V^*)b_t + p_t = 0\\ p_t \in \mathfrak{P}b_t\\ b_t \in \mathcal{B} \end{cases}$$

**Definition.** For  $b \in \mathcal{K} \coloneqq H_c[\mathcal{M}_+(\mathcal{X})]$ , we call  $\mathfrak{P}b \coloneqq \{p \in \mathcal{C}(\mathcal{X}) \mid p \leq 0 \text{ and } \langle H_c^{-1}b, p \rangle = 0\}$ the set of **pressure vectors** at b.

Sinkhorn Potential Flow:

$$(b_t)_t \in \mathscr{H}^1([0,+\infty), \mathcal{H}_c), \begin{cases} \tilde{G}_{\mu_t} \dot{b}_t + (V+V^*)b_t + p_t = 0\\ p_t \in \mathfrak{P}b_t\\ b_t \in \mathcal{B} \end{cases}$$

**Definition.** For  $b \in \mathcal{K} := H_c[\mathcal{M}_+(\mathcal{X})]$ , we call  $\mathfrak{P}b := \{p \in \mathcal{C}(\mathcal{X}) \mid p \leq 0 \text{ and } \langle H_c^{-1}b, p \rangle = 0\}$ the set of **pressure vectors** at b.



Sinkhorn Potential Flow:

$$(b_t)_t \in \mathscr{H}^1([0,+\infty), \mathcal{H}_c), \begin{cases} \tilde{G}_{\mu_t} \dot{b}_t + (V+V^*)b_t + p_t = 0\\ p_t \in \mathfrak{P}b_t\\ b_t \in \mathcal{B} \end{cases}$$

**Definition.** For  $b \in \mathcal{K} := H_c[\mathcal{M}_+(\mathcal{X})]$ , we call  $\mathfrak{P}b := \{p \in \mathcal{C}(\mathcal{X}) \mid p \leq 0 \text{ and } \langle H_c^{-1}b, p \rangle = 0\}$ the set of **pressure vectors** at b.



Sinkhorn Potential Flow:

$$(b_t)_t \in \mathscr{H}^1([0,+\infty), \mathcal{H}_c), \begin{cases} \tilde{G}_{\mu_t} \dot{b}_t + (V+V^*)b_t + p_t = 0\\ p_t \in \mathfrak{P}b_t\\ b_t \in \mathcal{B} \end{cases}$$

**Definition.** For  $b \in \mathcal{K} := H_c[\mathcal{M}_+(\mathcal{X})]$ , we call  $\mathfrak{P}b := \{p \in \mathcal{C}(\mathcal{X}) \mid p \leq 0 \text{ and } \langle H_c^{-1}b, p \rangle = 0\}$ 

the set of **pressure vectors** at b.

**Proposition.** Denote  $\iota_{\mathcal{K}}$  the convex indicator of  $\mathcal{K}$ . Then for  $b \in \mathcal{K}$ ,



Sinkhorn Potential Flow:

$$(b_t)_t \in \mathscr{H}^1([0,+\infty), \mathcal{H}_c), \begin{cases} \tilde{G}_{\mu_t} \dot{b}_t + (V+V^*)b_t + p_t = 0\\ p_t \in \mathfrak{P}b_t\\ b_t \in \mathcal{B} \end{cases}$$

**Definition.** For  $b \in \mathcal{K} := H_c[\mathcal{M}_+(\mathcal{X})]$ , we call  $\mathfrak{P}b := \left\{ p \in \mathcal{C}(\mathcal{X}) \mid p \leq 0 \text{ and } \left\langle H_c^{-1}b, p \right\rangle = 0 \right\}$ 

the set of **pressure vectors** at b.

**Proposition.** Denote  $\iota_{\mathcal{K}}$  the convex indicator of  $\mathcal{K}$ . Then for  $b \in \mathcal{K}$ , (a)  $\partial \iota_{\mathcal{K}}(b) = \mathcal{H}_c \cap \mathfrak{P}b$ 



Sinkhorn Potential Flow:

$$(b_t)_t \in \mathscr{H}^1([0,+\infty), \mathcal{H}_c), \begin{cases} \tilde{G}_{\mu_t} \dot{b}_t + (V+V^*)b_t + p_t = 0\\ p_t \in \mathfrak{P}b_t\\ b_t \in \mathcal{B} \end{cases}$$

**Definition.** For  $b \in \mathcal{K} := H_c[\mathcal{M}_+(\mathcal{X})]$ , we call  $\mathfrak{P}b := \{p \in \mathcal{C}(\mathcal{X}) \mid p \leq 0 \text{ and } \langle H_c^{-1}b, p \rangle = 0\}$ 

the set of **pressure vectors** at b.

**Proposition.** Denote  $\iota_{\mathcal{K}}$  the convex indicator of  $\mathcal{K}$ . Then for  $b \in \mathcal{K}$ , (a)  $\partial \iota_{\mathcal{K}}(b) = \mathcal{H}_c \cap \mathfrak{P}b$ (b)  $\tilde{G}_{\mu}^{-1}\mathfrak{P}b = \mathfrak{P}b$ 



Sinkhorn Potential Flow:

$$(b_t)_t \in \mathscr{H}^1([0,+\infty), \mathcal{H}_c), \begin{cases} \tilde{G}_{\mu_t} \dot{b}_t + (V+V^*)b_t + p_t = 0\\ p_t \in \mathfrak{P}b_t\\ b_t \in \mathcal{B} \end{cases}$$

**Definition.** For  $b \in \mathcal{K} := H_c[\mathcal{M}_+(\mathcal{X})]$ , we call  $\mathfrak{P}b := \{ p \in \mathcal{C}(\mathcal{X}) \mid p \leq 0 \text{ and } \langle H_c^{-1}b, p \rangle = 0 \}$ 

the set of **pressure vectors** at b.

**Proposition.** Denote  $\iota_{\mathcal{K}}$  the convex indicator of  $\mathcal{K}$ . Then for  $b \in \mathcal{K}$ , (a)  $\partial \iota_{\mathcal{K}}(b) = \mathcal{H}_c \cap \mathfrak{P}b$ (b)  $\tilde{G}_{\mu}^{-1}\mathfrak{P}b = \mathfrak{P}b$ (c)  $\tilde{G}_{\mu}^{-1}(V + V^*) = \frac{2}{\varepsilon}(V - V^*) =: \mathbf{W}$ 



Sinkhorn Potential Flow:

$$(b_t)_t \in \mathscr{H}^1([0, +\infty), \mathcal{H}_c), \begin{cases} \dot{b}_t + \mathbf{W}b_t + p_t = 0\\ p_t \in \mathfrak{P}b_t\\ b_t \in \mathcal{B} \end{cases}$$

**Definition.** For  $b \in \mathcal{K} := H_c[\mathcal{M}_+(\mathcal{X})]$ , we call  $\mathfrak{P}b := \{ p \in \mathcal{C}(\mathcal{X}) \mid p \leq 0 \text{ and } \langle H_c^{-1}b, p \rangle = 0 \}$ 

the set of **pressure vectors** at b.

**Proposition.** Denote  $\iota_{\mathcal{K}}$  the convex indicator of  $\mathcal{K}$ . Then for  $b \in \mathcal{K}$ , (a)  $\partial \iota_{\mathcal{K}}(b) = \mathcal{H}_c \cap \mathfrak{P}b$ (b)  $\tilde{G}_{\mu}^{-1}\mathfrak{P}b = \mathfrak{P}b$ (c)  $\tilde{G}_{\mu}^{-1}(V + V^*) = \frac{2}{\varepsilon}(V - V^*) =: \mathbf{W}$ 



Sinkhorn Potential Flow:

$$(b_t)_t \in \mathscr{H}^1([0,+\infty), \mathcal{H}_c), \begin{cases} \dot{b}_t + \mathbf{W}b_t + p_t = 0\\ p_t \in \mathfrak{P}b_t\\ b_t \in \mathcal{B} \end{cases}$$

**Definition.** For  $b \in \mathcal{K} := H_c[\mathcal{M}_+(\mathcal{X})]$ , we call  $\mathfrak{P}b := \{ p \in \mathcal{C}(\mathcal{X}) \mid p \leq 0 \text{ and } \langle H_c^{-1}b, p \rangle = 0 \}$ 

the set of **pressure vectors** at b.

**Proposition.** Denote  $\iota_{\mathcal{K}}$  the convex indicator of  $\mathcal{K}$ . Then for  $b \in \mathcal{K}$ , (a)  $\partial \iota_{\mathcal{K}}(b) = \mathcal{H}_c \cap \mathfrak{P}b$ (b)  $\tilde{G}_{\mu}^{-1}\mathfrak{P}b = \mathfrak{P}b$ (c)  $\tilde{G}_{\mu}^{-1}(V+V^*) = \frac{2}{\varepsilon}(V-V^*) =: \mathbf{W}$ 



5/12

Antisymmetric: generates rotational motion!

Sinkhorn Potential Flow:

$$(b_t)_t \in \mathscr{H}^1([0,+\infty), \mathcal{H}_c), \begin{cases} \dot{b}_t + \mathbf{W}b_t + p_t = 0\\ p_t \in \mathfrak{P}b_t\\ b_t \in \mathcal{B} \end{cases}$$

**Definition.** For  $b \in \mathcal{K} := H_c[\mathcal{M}_+(\mathcal{X})]$ , we call  $\mathfrak{P}b := \left\{ p \in \mathcal{C}(\mathcal{X}) \mid p \leq 0 \text{ and } \left\langle H_c^{-1}b, p \right\rangle = 0 \right\}$ 

the set of **pressure vectors** at b.

**Proposition.** Denote  $\iota_{\mathcal{K}}$  the convex indicator of  $\mathcal{K}$ . Then for  $b \in \mathcal{K}$ , (a)  $\partial \iota_{\mathcal{K}}(b) = \mathcal{H}_c \cap \mathfrak{P}b$ (b)  $\tilde{G}_{\mu}^{-1}\mathfrak{P}b = \mathfrak{P}b$ (c)  $\tilde{G}_{\mu}^{-1}(V + V^*) = \underbrace{\frac{2}{\varepsilon}(V - V^*) =: \mathbf{W}}_{\mathbf{V}}$ 





Antisymmetric: generates rotational motion!

Numerics on the 3-point space



- --- Boundary of  ${\mathcal B}$
- Theoretical rotation lines
- -•SJKO Flow (embedded)

Potential energy  $\left\langle H_{c}^{-1}b,Vb\right\rangle$ 

**Proposition.** If  $(x_t)_t \subset \mathcal{X}$  is a smooth trajectory and  $b_t = B(\delta_{x_t})$  then

 $\dot{b}_t + \mathbf{W}b_t + \mathfrak{P}b_t \ni 0 \iff \dot{x}_t \in -\partial V(x_t).$ 



**Proposition.** If  $(x_t)_t \subset \mathcal{X}$  is a smooth trajectory and  $b_t = B(\delta_{x_t})$  then

$$\dot{b}_t + \mathbf{W}b_t + \mathfrak{P}b_t \ni 0 \iff \dot{x}_t \in -\partial V(x_t).$$

**PROOF:** Direct computations.



**Proposition.** If  $(x_t)_t \subset \mathcal{X}$  is a smooth trajectory and  $b_t = B(\delta_{x_t})$  then

 $\dot{b}_t + \mathbf{W}b_t + \mathfrak{P}b_t \ni 0 \iff \dot{x}_t \in -\partial V(x_t).$ 

**PROOF:** Direct computations.

**Corollary.** For V convex and any  $x_0 \in \mathcal{X}$ , the Sinkhorn potential flow starting at  $b_0 = B(\delta_{x_0})$  is given by  $B(\delta_{x_t})$  with  $(x_t)_t$  the subgradient flow of V.

**Proposition.** If  $(x_t)_t \subset \mathcal{X}$  is a smooth trajectory and  $b_t = B(\delta_{x_t})$  then

$$\dot{b}_t + \mathbf{W}b_t + \mathfrak{P}b_t \ni 0 \iff \dot{x}_t \in -\partial V(x_t).$$

**PROOF:** Direct computations.

**Corollary.** For V convex and any  $x_0 \in \mathcal{X}$ , the Sinkhorn potential flow starting at  $b_0 = B(\delta_{x_0})$  is given by  $B(\delta_{x_t})$  with  $(x_t)_t$  the subgradient flow of V.





Distance between 1-particle SJKO and classical gradient flow for guadratic potential (r=1e-04)







**Theorem.** There exists a unique Sinkhorn potential flow  $(b_t)_t$  starting at  $b^0 \in \mathcal{B}$  which additionally verifies

**Theorem.** There exists a unique Sinkhorn potential flow  $(b_t)_t$  starting at  $b^0 \in \mathcal{B}$  which additionally verifies (a) The norm  $\|\dot{b}_t\|_{\mathcal{H}_a}$  decreases.

**Theorem.** There exists a unique Sinkhorn potential flow  $(b_t)_t$  starting at  $b^0 \in \mathcal{B}$  which additionally verifies (a) The norm  $\|\dot{b}_t\|_{\mathcal{H}}$  decreases.

Moreover,

(b) The flow is contractive i.e. two flows  $b^1$ ,  $b^2$  have decreasing  $\|b_t^1 - b_t^2\|_{\mathcal{H}_c}$ .



**Theorem.** There exists a unique Sinkhorn potential flow  $(b_t)_t$  starting at  $b^0 \in \mathcal{B}$  which additionally verifies (a) The norm  $\|\dot{b}_t\|_{\mathcal{U}}$  decreases.

Moreover,

(b) The flow is contractive i.e. two flows 
$$b^1$$
,  $b^2$  have decreasing  $\|b_t^1 - b_t^2\|_{\mathcal{H}_c}$ .



For 
$$\mathcal{X} = \{x_1, \dots, x_n\}, \, \mathcal{C}(\mathcal{X}) = \mathcal{H}_c = \mathbb{R}^n$$





**Theorem.** There exists a unique Sinkhorn potential flow  $(b_t)_t$  starting at  $b^0 \in \mathcal{B}$  which additionally verifies (a) The norm  $\|\dot{b}_t\|_{\mathcal{H}}$  decreases.

Moreover,

(b) The flow is contractive i.e. two flows  $b^1$ ,  $b^2$  have decreasing  $\|b_t^1 - b_t^2\|_{\mathcal{H}_c}$ .



For 
$$\mathcal{X} = \{x_1, \dots, x_n\}, \ \mathcal{C}(\mathcal{X}) = \mathcal{H}_c = \mathbb{R}^n$$





**Theorem.** There exists a unique Sinkhorn potential flow  $(b_t)_t$  starting at  $b^0 \in \mathcal{B}$  which additionally verifies (a) The norm  $\|\dot{b}_t\|_{\mathcal{U}}$  decreases.

Moreover,

(b) The flow is contractive i.e. two flows  $b^1$ ,  $b^2$  have decreasing  $\|b_t^1 - b_t^2\|_{\mathcal{H}_c}$ .

Sketch of proof: Discretize the space to utilize the structure of  $\mathcal{H}_c$ :

For 
$$\mathcal{X} = \{x_1, \dots, x_n\}, \ \mathcal{C}(\mathcal{X}) = \mathcal{H}_c = \mathbb{R}^n$$

 $\mapsto \mathbf{W} + \mathfrak{P}$  maximal monotone (gives contractivity),





**Theorem.** There exists a unique Sinkhorn potential flow  $(b_t)_t$  starting at  $b^0 \in \mathcal{B}$  which additionally verifies (a) The norm  $\|\dot{b}_t\|_{\mathcal{U}}$  decreases.

Moreover,

(b) The flow is contractive i.e. two flows  $b^1$ ,  $b^2$  have decreasing  $\|b_t^1 - b_t^2\|_{\mathcal{H}_c}$ .

Sketch of proof: Discretize the space to utilize the structure of  $\mathcal{H}_c$ :

For 
$$\mathcal{X} = \{x_1, \dots, x_n\}, \ \mathcal{C}(\mathcal{X}) = \mathcal{H}_c = \mathbb{R}^n$$

- $\mapsto \mathbf{W} + \mathfrak{P}$  maximal monotone (gives contractivity),
- ${} \rightarrowtail$  We can use the Hille-Yosida theorem.





**Theorem.** There exists a unique Sinkhorn potential flow  $(b_t)_t$  starting at  $b^0 \in \mathcal{B}$  which additionally verifies (a) The norm  $\|\dot{b}_t\|_{\mathcal{U}}$  decreases.

Moreover,

(b) The flow is contractive i.e. two flows  $b^1$ ,  $b^2$  have decreasing  $\|b_t^1 - b_t^2\|_{\mathcal{H}_c}$ .

Sketch of proof: Discretize the space to utilize the structure of  $\mathcal{H}_c$ :

For 
$$\mathcal{X} = \{x_1, \dots, x_n\}, \, \mathcal{C}(\mathcal{X}) = \mathcal{H}_c = \mathbb{R}^n$$

- $\mapsto \mathbf{W} + \mathfrak{P}$  maximal monotone (gives contractivity),
- ${} \rightarrowtail$  We can use the Hille-Yosida theorem.

Then, use classical compactness results and verify that the limit  $n \to \infty$  verifies the equation.





12

**Theorem.** There exists a unique Sinkhorn potential flow  $(b_t)_t$  starting at  $b^0 \in \mathcal{B}$  which additionally verifies (a) The norm  $\|\dot{b}_t\|_{\mathcal{U}}$  decreases.

Moreover,

(b) The flow is contractive i.e. two flows  $b^1$ ,  $b^2$  have decreasing  $\|b_t^1 - b_t^2\|_{\mathcal{H}_c}$ .

Sketch of proof: Discretize the space to utilize the structure of  $\mathcal{H}_c$ :

For 
$$\mathcal{X} = \{x_1, \dots, x_n\}, \, \mathcal{C}(\mathcal{X}) = \mathcal{H}_c = \mathbb{R}^n$$

- $\mapsto \mathbf{W} + \mathfrak{P}$  maximal monotone (gives contractivity),
- ${} \rightarrowtail$  We can use the Hille-Yosida theorem.

Then, use classical compactness results and verify that the limit  $n \to \infty$  verifies the equation. The results hold for any  $V \in \mathcal{C}(\mathcal{X})$ !





8/12

**Theorem.** Assume V has a unique minimizer  $x^*$  on  $\mathcal{X}$ .

**Theorem.** Assume V has a unique minimizer  $x^*$  on  $\mathcal{X}$ .



**Theorem.** Assume V has a unique minimizer  $x^*$  on  $\mathcal{X}$ . Then,

$$b_t \xrightarrow[t \to \infty]{} b_{\min} \coloneqq B(\delta_{x^*})$$

and thus

$$\mu_t \xrightarrow[t \to \infty]{}^* \delta_{x^*}$$





$$b_t \xrightarrow[t \to \infty]{} b_{\min} \coloneqq B(\delta_{x^\star})$$

and thus

$$\mu_t \xrightarrow[t \to \infty]{}^* \delta_{x^\star}.$$



Sketch of proof:

•  $\mathcal{B}$  compact  $\implies$  convergent subsequences exist

**Theorem.** Assume V has a unique minimizer  $x^*$  on  $\mathcal{X}$ . Then,

$$b_t \xrightarrow[t \to \infty]{} b_{\min} \coloneqq B(\delta_{x^\star})$$

and thus

$$\mu_t \xrightarrow[t \to \infty]{}^* \delta_x$$

Sketch of proof:

- $\mathcal{B}$  compact  $\implies$  convergent subsequences exist
- $\dot{b}_t \to 0$  and  $\mathbf{W} + \mathfrak{P}$  closed  $\implies$  accumulation points are critical


#### Asymptotics

**Theorem.** Assume V has a unique minimizer  $x^*$  on  $\mathcal{X}$ . Then,

$$b_t \xrightarrow[t \to \infty]{t \to \infty} b_{\min} \coloneqq B(\delta_{x^\star})$$

and thus

$$\mu_t \xrightarrow[t \to \infty]{}^* \delta_x$$

- $\mathcal{B}$  compact  $\implies$  convergent subsequences exist
- $\dot{b}_t \to 0$  and  $\mathbf{W} + \mathfrak{P}$  closed  $\implies$  accumulation points are critical
- $x^*$  is the unique minimizer  $\implies b_{\min}$  is the only critical point.



#### Asymptotics

**Theorem.** Assume V has a unique minimizer  $x^*$  on  $\mathcal{X}$ . Then,

$$b_t \xrightarrow[t \to \infty]{t \to \infty} b_{\min} \coloneqq B(\delta_{x^\star})$$

and thus

$$\mu_t \xrightarrow[t \to \infty]{}^* \delta_x$$

Sketch of proof:

- $\mathcal{B}$  compact  $\implies$  convergent subsequences exist
- $\dot{b}_t \to 0$  and  $\mathbf{W} + \mathfrak{P}$  closed  $\implies$  accumulation points are critical
- $x^*$  is the unique minimizer  $\implies b_{\min}$  is the only critical point.



Because vertical perturbations are admissible for Sinkhorn!



Sinkhorn flow ( $\varepsilon = 0.2$ )



Sinkhorn flow ( $\varepsilon = 0.2$ )



Sinkhorn flow  $(\varepsilon = 5)$ 



Sinkhorn flow  $(\varepsilon = 5)$ 





**Theorem.** On a finite space, with  $(b_k^{\tau})_k$  given by the SJKO scheme after embedding,  $(\overline{b}_t^{\tau})_t$  the piecewise constant interpolation,  $(b_t^{\tau})_t$  the piecewise geodesic interpolation, then

$$b^{\tau}, \overline{b}^{\tau} \xrightarrow[\tau \to 0]{} b$$
 uniformly on  $[0, T]$ 

with b the Sinkhorn potential flow of V starting at  $b_0$ .

**Theorem.** On a finite space, with  $(b_k^{\tau})_k$  given by the SJKO scheme after embedding,  $(\overline{b}_t^{\tau})_t$  the piecewise constant interpolation,  $(b_t^{\tau})_t$  the piecewise geodesic interpolation, then

 $b^{\tau}, \overline{b}^{\tau} \xrightarrow[\tau \to 0]{} b$  uniformly on [0, T]

with b the Sinkhorn potential flow of V starting at  $b_0$ .

Sketch of proof:

Classical estimates and compactness yields a limit

**Theorem.** On a finite space, with  $(b_k^{\tau})_k$  given by the SJKO scheme after embedding,  $(\overline{b}_t^{\tau})_t$  the piecewise constant interpolation,  $(b_t^{\tau})_t$  the piecewise geodesic interpolation, then

 $b^{\tau}, \overline{b}^{\tau} \xrightarrow[\tau \to 0]{} b$  uniformly on [0, T]

with b the Sinkhorn potential flow of V starting at  $b_0$ .

- Classical estimates and compactness yields a limit
- Optimality condition of SJKO:  $\frac{1}{2\tau} \left( f_{\mu_{k+1}^{\tau},\mu_{k}^{\tau}} f_{\mu_{k+1}^{\tau}} \right) + V + p_{k+1}^{\tau} = 0$

**Theorem.** On a finite space, with  $(b_k^{\tau})_k$  given by the SJKO scheme after embedding,  $(\overline{b}_t^{\tau})_t$  the piecewise constant interpolation,  $(b_t^{\tau})_t$  the piecewise geodesic interpolation, then

 $b^{\tau}, \overline{b}^{\tau} \xrightarrow[\tau \to 0]{} b$  uniformly on [0, T]

with b the Sinkhorn potential flow of V starting at  $b_0$ .

Sketch of proof:

- Classical estimates and compactness yields a limit
- Optimality condition of SJKO:  $\frac{1}{2\tau} \left( f_{\mu_{k+1},\mu_k^{\tau}} f_{\mu_{k+1}^{\tau}} \right) + V + p_{k+1}^{\tau} = 0$

 $\frac{1}{2\tau} \left( f_{t,t-\tau}^{\tau} - f_{t,t}^{\tau} \right)$ 

**Theorem.** On a finite space, with  $(b_k^{\tau})_k$  given by the SJKO scheme after embedding,  $(\overline{b}_t^{\tau})_t$  the piecewise constant interpolation,  $(b_t^{\tau})_t$  the piecewise geodesic interpolation, then

 $b^{\tau}, \overline{b}^{\tau} \xrightarrow[\tau \to 0]{} b$  uniformly on [0, T]

with b the Sinkhorn potential flow of V starting at  $b_0$ .

- Classical estimates and compactness yields a limit
- Optimality condition of SJKO:  $\frac{1}{2\tau} \left( f_{\mu_{k+1},\mu_k^{\tau}} f_{\mu_{k+1}^{\tau}} \right) + V + p_{k+1}^{\tau} = 0$

$$\frac{1}{2\tau} \left( f_{t,t-\tau}^{\tau} - f_{t,t}^{\tau} \right) = -\frac{1}{2\tau} \int_{t-\tau}^{t} \frac{\partial f_{t,s}^{\tau}}{\partial s} ds$$

**Theorem.** On a finite space, with  $(b_k^{\tau})_k$  given by the SJKO scheme after embedding,  $(\overline{b}_t^{\tau})_t$  the piecewise constant interpolation,  $(b_t^{\tau})_t$  the piecewise geodesic interpolation, then

 $b^{\tau}, \overline{b}^{\tau} \xrightarrow[\tau \to 0]{} b$  uniformly on [0, T]

with b the Sinkhorn potential flow of V starting at  $b_0$ .

Sketch of proof:

- Classical estimates and compactness yields a limit
- Optimality condition of SJKO:  $\frac{1}{2\tau} \left( f_{\mu_{k+1},\mu_k^{\tau}} f_{\mu_{k+1}^{\tau}} \right) + V + p_{k+1}^{\tau} = 0$

$$\frac{1}{2\tau} \left( f_{t,t-\tau}^{\tau} - f_{t,t}^{\tau} \right) = -\frac{1}{2\tau} \int_{t-\tau}^{t} \frac{\partial f_{t,s}^{\tau}}{\partial s} ds$$
$$\xrightarrow[\tau \to 0]{} -\frac{1}{2} \frac{\partial f_{t,t}}{\partial t} = G_{\mu_{t}} \left[ \dot{\mu}_{t} \right]$$

**Theorem.** On a finite space, with  $(b_k^{\tau})_k$  given by the SJKO scheme after embedding,  $(\overline{b}_t^{\tau})_t$  the piecewise constant interpolation,  $(b_t^{\tau})_t$  the piecewise geodesic interpolation, then

 $b^{\tau}, \overline{b}^{\tau} \xrightarrow[\tau \to 0]{} b$  uniformly on [0, T]

with b the Sinkhorn potential flow of V starting at  $b_0$ .

- Classical estimates and compactness yields a limit
- Optimality condition of SJKO:  $\frac{1}{2\tau} \left( f_{\mu_{k+1}^{\tau},\mu_{k}^{\tau}} f_{\mu_{k+1}^{\tau}} \right) + V + p_{k+1}^{\tau} = 0$

$$\frac{1}{2\tau} \left( f_{t,t-\tau}^{\tau} - f_{t,t}^{\tau} \right) = -\frac{1}{2\tau} \int_{t-\tau}^{t} \frac{\partial f_{t,s}^{\tau}}{\partial s} ds$$
$$\xrightarrow[\tau \to 0]{} \frac{1}{2} \frac{\partial f_{t,t}}{\partial t} = G_{\mu_{t}} \left[ \dot{\mu}_{t} \right]$$

**Theorem.** On a finite space, with  $(b_k^{\tau})_k$  given by the SJKO scheme after embedding,  $(\overline{b}_t^{\tau})_t$  the piecewise constant interpolation,  $(b_t^{\tau})_t$  the piecewise geodesic interpolation, then

 $b^{\tau}, \overline{b}^{\tau} \xrightarrow[\tau \to 0]{} b$  uniformly on [0, T]

with b the Sinkhorn potential flow of V starting at  $b_0$ .

- Classical estimates and compactness yields a limit
- Optimality condition of SJKO:  $\frac{1}{2\tau} \left( f_{\mu_{k+1}^{\tau},\mu_{k}^{\tau}} f_{\mu_{k+1}^{\tau}} \right) + V + p_{k+1}^{\tau} = 0$

$$\frac{1}{2\tau} \left( f_{t,t-\tau}^{\tau} - f_{t,t}^{\tau} \right) = -\frac{1}{2\tau} \int_{t-\tau}^{t} \underbrace{\frac{\partial f_{t,s}^{\tau}}{\partial s}}_{t-\tau} ds \text{ Only valid in finite space !}$$
In the general case, tangent spaces are incompatible.
$$\xrightarrow[\tau \to 0]{\tau \to 0} -\frac{1}{2} \frac{\partial f_{t,t}}{\partial t} = G_{\mu_t} \left[ \dot{\mu}_t \right]$$
11/12

**Theorem.** On a finite space, with  $(b_k^{\tau})_k$  given by the SJKO scheme after embedding,  $(\overline{b}_t^{\tau})_t$  the piecewise constant interpolation,  $(b_t^{\tau})_t$  the piecewise geodesic interpolation, then

$$b^{\tau}, \overline{b}^{\tau} \xrightarrow[\tau \to 0]{} b$$
 uniformly on  $[0, T]$ 

with b the Sinkhorn potential flow of V starting at  $b_0$ .

Hope:

$$\begin{array}{c} \mathrm{SJKO}_n \xrightarrow[\tau \to 0]{} \mathrm{Flow}_n \\ & \downarrow^n \to \infty \\ & \mathrm{Flow} \end{array}$$

- Classical estimates and compactness yields a limit
- Optimality condition of SJKO:  $\frac{1}{2\tau} \left( f_{\mu_{k+1},\mu_k^{\tau}} f_{\mu_{k+1}^{\tau}} \right) + V + p_{k+1}^{\tau} = 0$

$$\frac{1}{2\tau} \left( f_{t,t-\tau}^{\tau} - f_{t,t}^{\tau} \right) = -\frac{1}{2\tau} \int_{t-\tau}^{t} \underbrace{\frac{\partial f_{t,s}^{\tau}}{\partial s}}_{t-\tau} ds \text{ Only valid in finite space !}$$
In the general case, tangent spaces are incompatible.  

$$\xrightarrow[\tau \to 0]{\tau \to 0} -\frac{1}{2} \frac{\partial f_{t,t}}{\partial t} = G_{\mu_t} \left[ \dot{\mu}_t \right]$$
11/12

**Theorem.** On a finite space, with  $(b_k^{\tau})_k$  given by the SJKO scheme after embedding,  $(\overline{b}_t^{\tau})_t$  the piecewise constant interpolation,  $(b_t^{\tau})_t$  the piecewise geodesic interpolation, then

$$b^{\tau}, \overline{b}^{\tau} \xrightarrow[\tau \to 0]{} b$$
 uniformly on  $[0, T]$ 

with b the Sinkhorn potential flow of V starting at  $b_0$ .

Hope:

 $\begin{array}{c} \text{SJKO}_n \xrightarrow[]{\tau \to 0} \text{Flow}_n \\ & \stackrel{|}{?} \\ & \downarrow^{?} \\ & \downarrow^{r} \\ \text{SJKO} \xrightarrow{-??-} \text{Flow} \end{array}$ 

- Classical estimates and compactness yields a limit
- Optimality condition of SJKO:  $\frac{1}{2\tau} \left( f_{\mu_{k+1}^{\tau},\mu_{k}^{\tau}} f_{\mu_{k+1}^{\tau}} \right) + V + p_{k+1}^{\tau} = 0$

$$\frac{1}{2\tau} \left( f_{t,t-\tau}^{\tau} - f_{t,t}^{\tau} \right) = -\frac{1}{2\tau} \int_{t-\tau}^{t} \underbrace{\frac{\partial f_{t,s}^{\tau}}{\partial s}}_{t-\tau} ds \text{ Only valid in finite space !}$$
In the general case, tangent spaces are incompatible.
$$\xrightarrow[\tau \to 0]{\tau \to 0} -\frac{1}{2} \frac{\partial f_{t,t}}{\partial t} = G_{\mu_t} \left[ \dot{\mu}_t \right]$$
11/12

What we have seen:

 $\blacksquare$  SJKO limit (valid for finite  $\mathcal X)$  after embedding is a constrained rotational motion

What we have seen:

- SJKO limit (valid for finite  $\mathcal{X}$ ) after embedding is a constrained rotational motion
- The equation is well posed for any  $V \in \mathcal{C}(\mathcal{X})$  and contractive

What we have seen:

- SJKO limit (valid for finite  $\mathcal{X}$ ) after embedding is a constrained rotational motion
- The equation is well posed for any  $V \in \mathcal{C}(\mathcal{X})$  and contractive
- The solution converges to the energy minimizer when it is unique, sometimes through "teleportation"

What we have seen:

- $\blacksquare$  SJKO limit (valid for finite  $\mathcal X)$  after embedding is a constrained rotational motion
- The equation is well posed for any  $V \in \mathcal{C}(\mathcal{X})$  and contractive
- The solution converges to the energy minimizer when it is unique, sometimes through "teleportation"

Future research directions:

 $\blacksquare$  Limit  $\tau \to 0$  for any compact space

What we have seen:

- $\blacksquare$  SJKO limit (valid for finite  $\mathcal X)$  after embedding is a constrained rotational motion
- The equation is well posed for any  $V \in \mathcal{C}(\mathcal{X})$  and contractive
- The solution converges to the energy minimizer when it is unique, sometimes through "teleportation"

Future research directions:

- $\blacksquare$  Limit  $\tau \to 0$  for any compact space
- Quantitative asymptotics

What we have seen:

- $\blacksquare$  SJKO limit (valid for finite  $\mathcal X)$  after embedding is a constrained rotational motion
- The equation is well posed for any  $V \in \mathcal{C}(\mathcal{X})$  and contractive
- The solution converges to the energy minimizer when it is unique, sometimes through "teleportation"

Future research directions:

- Limit  $\tau \to 0$  for any compact space
- Quantitative asymptotics

• Fokker-Planck case 
$$\left(E(\mu) = \langle \mu, V \rangle + \int \log(\mu) d\mu\right)$$

What we have seen:

- SJKO limit (valid for finite  $\mathcal{X}$ ) after embedding is a constrained rotational motion
- The equation is well posed for any  $V \in \mathcal{C}(\mathcal{X})$  and contractive
- The solution converges to the energy minimizer when it is unique, sometimes through "teleportation"

Future research directions:

- $\blacksquare$  Limit  $\tau \to 0$  for any compact space
- Quantitative asymptotics
- Fokker-Planck case  $\left(E(\mu) = \langle \mu, V \rangle + \int \log(\mu) d\mu\right)$

# Thank you for listening!

## Appendix

$$\frac{\partial f_{t,s}}{\partial s} = -\varepsilon \left( \mathrm{Id} - K_{t,s} K_{s,t} \right)^{-1} H_{t,s} \left[ \dot{\mu}_s \right]$$

$$\frac{\partial f_{t,s}}{\partial s} = -\varepsilon \left( \mathrm{Id} - K_{t,s} K_{s,t} \right)^{-1} H_{t,s} \, \dot{\mu}_s \in \mathcal{H}^*_{\mu_s,0}$$

$$\frac{\partial f_{t,s}}{\partial s} = -\varepsilon \left( \mathrm{Id} - K_{t,s} K_{s,t} \right)^{-1} H_{t,s} \dot{\mu}_s \in \mathcal{H}^*_{\mu_s,0}$$
$$\mathcal{H}^*_{\mu_t,\mu_s} \to \mathcal{H}_{\mu_t,\mu_s}$$

where 
$$\mathcal{H}_{\mu,\nu} \coloneqq \exp\left(rac{f_{\mu,\nu}}{arepsilon}
ight) \mathcal{H}_c$$

$$\frac{\partial f_{t,s}}{\partial s} = -\varepsilon \left( \mathrm{Id} - K_{t,s} K_{s,t} \right)^{-1} H_{t,s} \, \dot{\mu}_s \in \mathcal{H}^*_{\mu_s,0}$$
$$\mathcal{H}^*_{\mu_t,\mu_s} \to \mathcal{H}_{\mu_t,\mu_s}$$

where  $\mathcal{H}_{\mu,\nu} \coloneqq \exp\left(\frac{f_{\mu,\nu}}{\varepsilon}\right) \mathcal{H}_c$ 

But generally speaking  $\mathcal{H}^*_{\mu_s,0} \not\subset \mathcal{H}^*_{\mu_t,\mu_s}$  !

#### Finite space case

