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Abstract

The pioneering work of Jordan, Kinderlehrer, Otto has shown that some meaningful Partial Differential Equa-
tions (PDEs) such as the diffusion equation, the continuity equation and more generally Fokker-Planck equations
can be interpreted as gradient flows in the space of probability measures endowed with the Wasserstein distance
from Optimal Transport (OT). Numerically speaking, the Wasserstein distance can be computationally expen-
sive but its entropic regularization is more accessible thanks to Sinkhorn’s algorithm. The debiased version
of entropic OT, named the Sinkhorn divergence, has been widely utilized as approximation of the Wasserstein
distance, but is emerging as an object of interest in itself due to its smoothness and statistical properties. In
this thesis, we study gradient flows in the space of probability measures endowed with the Sinkhorn divergence,
by utilizing the recently introduced Riemannian structure based on its local expansion. We focus on the case
of a potential energy, and derive the differential equation corresponding to its gradient flow (the validity of the
limit of the Sinkhorn JKO scheme is shown for finite spaces as the general case is much more involved). After
a change of variables, this equation appears as a constrained rotational motion on the sphere of a Reproducing
Kernel Hilbert Space (RKHS), and the particular case of the flow of a single Dirac mass cöıncides with the
classical gradient flow of a potential when the latter is convex. We obtain existence, uniqueness, contractivity
of a solution as well as its convergence in time to the minimum of the energy for a large class of potentials
including non-convex ones. We use a simple numerical scheme to obtain illustrations of this theory.
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1 Introduction

1.1 Gradient flows in metric spaces

We begin by briefly introducing gradient flows in the Euclidean case in order to give intuition on how to
generalize them to metric spaces. The reader may find a more comprehensive review of gradient flows in metric
spaces in [1], and the full theory in the seminal book [2].

Definition 1.1. Let F : Rd → R be a differentiable function. A curve (xt)t≥0 ⊂ Rd is said follow the gradient
flow of F starting at x0 ∈ Rd if it is solution of the Cauchy problem{

∀t ≥ 0, ẋt = −∇F (xt),
x0 = x0.

(1.1)

If F is convex (and potentially not differentiable), a subgradient flow is defined analogously as a curve
verifying {

∀t ≥ 0, ẋt ∈ −∂F (xt),
x0 = x0.

(1.2)

Existence of a gradient flow in the case where F has Lipschitz gradient is directly given by the Cauchy-Lipschitz
theorem, but this assumption is in fact not necessary: one can obtain a solution by discretizing (1.1) or (1.2)
appropriately, then taking the limit as the time step goes to 0. This discretization corresponds to the implicit
Euler scheme widely used for better stability when numerically approximating differential equations, defined
through the iterates

xτk+1 − xτk
τ

= −∇F (xτk+1). (1.3)

Observe that the left hand side can be rewritten as the gradient of the function

gτk : x 7→
∥x− xτk∥

2
2

2τ
(1.4)

at xτk+1, and as a result the scheme can be written

∇ (gτk + F )
(
xτk+1

)
= 0. (1.5)

Fermat’s rule gives that the above is verified for

xτk+1 ∈ argmin
x

F (x) +
∥x− xτk∥

2
2

2τ
(1.6)

under the extra assumption that F is lower bounded so that such a minimum exists. The formulation (1.6)
can in fact be defined with the only assumptions that F is lower semi continuous (l.s.c.) and lower bounded to
have existence of a minimizer at each step, and it has the benefit of making no use of the notion of gradient,
only that of a metric. We can therefore define, for a metric space (X, d) and a l.s.c. lower bounded functional
F : X→ R, the scheme

xτk+1 ∈ argmin
x

F (x) +
d (x, xτk)

2

2τ
(1.7)

and deduce the definition of Generalized Minimizing Movements (GMMs) in the sense of De Giorgi [3].
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Definition 1.2. A curve (xt)t in a metric space (X, d) is said to be a Generalized Minimizing Movement
if there exists a sequence of time steps (τn)n converging to 0 such that the piecewise constant interpolation of
the sequence (1.7) given by

xnt = xτnk for t ∈ [kτn, (k + 1)τn) (1.8)

converges uniformly to x.

This can give a preliminary idea of gradient flow, but the drawback is that this definition does not characterize
the equation that such GMMs should verify, as the ODE ”ẋt = −∇F (xt)” does not make sense in this context
since neither the time derivative nor the gradient of a functional are well defined in an arbitrary metric space.
To remedy this, the theory developed in [2] finds two alternatives definitions that extend gradient flows in
Euclidean space and make use of only metric considerations, namely the Energy Dissipation Equality (EDE)
and Evolution Variational Inequality (EVI). We do not dive into this formalism as we shall see that it is possible
to get limiting equations in our particular case of probability measures with simpler considerations.

1.2 The Wasserstein space and JKO flows

The theory of gradient flows in metric spaces finds its main applications on the space of probability measures
endowed with the Monge-Kantorovitch distance of Optimal Transport (OT), also known as Wasserstein distance,
which we now briefly introduce. In this thesis, X will denote a compact metric space, P(X ) is the set of
probability measures on X , C(X ) is the Banach space of continuous functions on X endowed with the supremum
norm ∥·∥∞, whose dual is identified with the setM(X ) of signed Radon measures on X through the Markov-
Riesz-Kakutani theorem [4, Theorem 6.19]. The set of couplings with marginals µ, ν ∈ P(X ) is denoted

Π(µ, ν) := {π ∈ P(X × X ), (P1)♯π = µ, (P2)♯ = ν}

with (Pi)♯π the ith marginal of π (i ∈ {1, 2}) i.e. its pushforward by the projection Pi onto the ith component
of the product space. For a cost c ∈ C(X × X ), the optimal transport problem intuitively consists in finding
the minimal total cost to move the mass from one measure to another, which defines the OT cost denoted for
µ, ν ∈ P(X ) as [5]

OT0(µ, ν) := min
π∈Π(µ,ν)

∫
X×X

c(x, y)dπ(x, y). (1.9)

When the cost c is the square distance on X×X , the Wasserstein distance is defined asW2(µ, ν) :=
√
OT0(µ, ν).

It defines a proper metric, metrizes the weak-* topology (i.e. convergence in law), makes the so-called Wasser-
stein space (P(X ),W2) a Polish space [5, Section 6] and is aware of the geometry of the ambient space X as
it is directly influenced by the distance between supports. It additionally has deep ties with partial differential
equations (PDEs) through the GMMs presented above: indeed, one can consider the discrete scheme (1.7) in
the Wasserstein space i.e. take (X, d) = (P(X ),W2). This is referred to as the JKO scheme, named after
the authors of the seminal paper [6] who have shown that when X is a convex subset of Rd endowed with the
Euclidean norm, the corresponding GMMs for ’free energy’ functionals describe meaningful partial differential
equations, the Fokker-Planck equations. A first particular case of importance is the continuity equation (or
transport equation) for a gradient vector field: for a differentiable potential V ∈ C(X ), it writes

µ̇t = div (µt∇V ) (1.10)

where the curve (µt)t is valued in P(X ), and the notion of solution is understood in an appropriate weak
sense [7, Definition 4.1]. It is a recurring equation when modeling mass conservation in fluid dynamics [8,
Section 1.4], charge conservation in electromagnetism [9, Section 4.2] and others. When thinking of a measure
as a distribution of particles, this equation is interpreted as the fact that every particle follows the classical
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gradient flow of V [7, Theorem 4.4]. The work [6] further reformulates it as the gradient flow with respect to
the Wasserstein distance of the potential energy functional

µ 7→ ⟨µ, V ⟩

where ⟨·, ·⟩ denotes the duality product in a Banach space, here ⟨µ, V ⟩ =
∫
V dµ. A second important case is the

diffusion equation which writes for a curve of probability density functions (ρt)t with respect to the Lebesgue
measure

ρ̇t = ∆ρt (1.11)

where ∆ denotes the Laplacian. This equation describes the law of a standard Brownian motion and is central
in stochastic modeling [10]. It is also prevalent in physics when modeling diffusive phenomena. The paper [6]
inteprets this equation as the gradient flow of the entropy functional

ρ 7→
∫

log(ρ(x))ρ(x)dx.

The more general Fokker-Planck equations are linear combinations of the previous two cases, and are related
to a class of stochastic differential equations. They are thus the gradient flow of the free energy functional
being a linear combination of a potential energy and the entropy.

Multiple other meaningful PDEs have since been interpreted as gradient flows in the Wasserstein space, such
as the porous medium equation [11], the Keller-Segel equation [12] and more. Wasserstein gradient flows were
also used to model crowd motion by describing a PDE that cannot be analyzed through classical techniques in
[13], showing the versatility of this framework. They are also emerging as a useful tool in machine learning, for
instance to model particle dynamics [14] or improve Generative Adversarial Network training [15].

1.3 The Sinkhorn divergence

From a numerical perspective, one of the main drawbacks of methods using the Wasserstein distance is its high
computational cost. One can compute (1.9) as a linear program when the input measures are discrete [16,
Section 3], however this can become untractable for a large number of points, as the size of the matrices c and π
are n×m for n,m the respective numbers of Dirac masses in the input and output measures. The introduction
of an entropic regularization allows for a much faster optimization procedure thanks to Sinkhorn’s algorithm
[17], giving the Entropic OT loss defined as follows: for a regularization parameter ε > 0,

OTε(µ, ν) := min
π∈Π(µ,ν)

∫
X×X

c(x, y)dπ(x, y) + εKL (π|µ⊗ ν) (1.12)

where the KL divergence is given by

KL (π|γ) :=
∫
X×X

log

(
dπ

dγ

)
dπ −

∫
X×X

dπ +

∫
X×X

dγ

when π is absolutely continuous with respect to γ, and +∞ otherwise. This loss approximates OT0 in the sense
that it is recovered when ε→ 0 [18], and it is therefore still aware of the geometry of X so long as ε does not get
large. On top of better numerical tractability [16], other works have shown that this loss has better statistical
complexity with regards to the curse of dimensionality [19] and is smooth with efficiently computed gradients
[20]. One main drawback is that OTε has an inherent bias in the sense that generally speaking OTε(µ, µ) ̸= 0,
and there may even be measures ν such that OTε(µ, ν) < OTε(µ, µ). This motivated [20] to introduce the
Sinkhorn divergence by removing this bias, namely

Sε(µ, ν) := OTε(µ, ν)− 1
2OTε(µ, µ)− 1

2OTε(ν, ν). (1.13)
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This is indeed a divergence in the sense of the following theorem proven by [21], which also provides further
desirable properties.

Theorem 1.3 ([21, Theorem 1]). Assume that c : X × X → R+ is a Lipschitz cost function such that

kc : (x, y) 7→ e−
c(x,y)

ε is a positive definite universal kernel. Then Sε is symmetric positive definite, smooth,
convex in each of its input variables and metrizes the weak-* convergence.

Here ’positive definite universal kernel’ is understood in the framework of Reproducing Kernel Hilbert Spaces
(RKHS) [22, 23], this assumption is satisfied in the usual case where the cost c is the Euclidean distance on
X ⊂ Rd. With these statistical and numerical advantages along with its smoothness, the Sinkhorn divergence
is emerging as an object of interest in itself rather than only as an approximation of Optimal Transport.

1.4 Gradient flows in the geometry of the Sinkhorn divergence

Since JKO flows in the Wasserstein geometry discretize important PDEs, but the Monge-Kantorovitch distance
can be difficult to compute numerically, a natural idea is to approximate it with Entropic OT. This idea has
been studied in a few articles. The first [24] studies the scheme

µτk+1 = argmin
µ∈P(X )

F (µ) + 1
2τOTε(µ, µ

τ
k) (1.14)

by reformulating it as a proximal stepping, with respect to the KL divergence, of a sum of functionals (one
corresponding to F and another enforcing the constraints). The author takes advantage of this structure
to introduce a computational scheme utilizing Dykstra’s algorithm for Bregman divergences [25], in order to
efficiently perform each JKO step. The resulting numerical scheme enjoys low computational cost and is shown
to be versatile as it can deal with attraction (i.e. minimizing distance to a target distribution), congestion (i.e.
capped density) and multiple interacting measures. The main drawback is the bias induced by OTε, which when
looking at the limit τ→ 0 for a fixed ε > 0 could induce discontinuities in time (since OTε(µ, µ) > 0 generically).
This leads to the need of taking ε → 0 as well during the analysis, which was studied by the follow-up article
[26]. This work gives a self contained proof that OTε converges to the Wasserstein distance as ε → 0 in the
sense of Γ convergence, and that the corresponding gradient flows also converge to the solution of the Fokker-
Planck equation when both ε and the time step τ jointly vanish at a suitable rate, namely ε |log ε| = O(τ2)
[26, Theorem 3.16]. The authors highlight that one must at least have ε = o(τ) to hope for convergence [26,
Proposition 3.6], and an ongoing work [27] shows it is sufficient. The latter work also shows that when taking
ε = θτ for some θ > 0, an entropic term is added to the limiting equation. The results of [26] were later
extended to a slightly more general class of PDEs in [28], which includes nonlinear kinetic Fokker-Planck and
Kolmogorov-type diffusion equations.

A notable pitfall is that the condition ε = o(τ) (or even ε = O(τ)) can be challenging to ask from a computational
standpoint, since to approximate the continuous solution of a PDE we ideally want τ as small as possible, while
a vanishing ε makes the convergence of Sinkhorn’s algorithm much slower, even with state-of-the-art ε-scaling
methods (the convergence rate is around O

(
1
ε

)
, see [29, Proposition 18 and Section 5.2]). It could therefore be

beneficial to consider the limit τ→ 0 for a fixed value of ε, and to use the debiased Sinkhorn divergence instead
of OTε to remedy the discontinuity problem mentioned in [24]. We have seen Section 1.3 that the Sinkhorn
divergence has desirable properties lost when ε vanishes, which further motivates keeping ε > 0 fixed. This
leads to the following Sinkhorn-JKO (SJKO) scheme which is the starting point of this thesis:

µτk+1 = argmin
µ∈P(X )

F (µ) + 1
2τSε(µ, µ

τ
k). (1.15)

As of writing, we have been unable to find literature studying this de-biased scheme and its limit τ → 0 for
fixed ε > 0. This is in part due to the fact that this problem requires a finer understanding of the local behavior
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of the Sinkhorn divergence and the geometry it induces, which was only recently studied in the work [30] where
the authors exhibit a Riemannian structure on the space of probability measures which locally agrees with the
Sinkhorn divergence. To do so, they also embed the space of probability measures into a subset of the sphere
in a RKHS through a change of variables. We will further detail the results of this paper in Section 2 as it will
lay the foundations necessary for our analysis.

1.5 Contributions and outline

In this thesis, we focus on the case of a potential energy as it is the most well-understood in the Wasserstein
case. The structure of this report is as follows, with an emphasis on the distinction between literature review
and novel results.

Review of Entropic OT and its geometry:

� In Section 2, we first present basic results about the dual of the Entropic OT problem and most importantly
the recent results of [30], as a thorough understanding of this work is needed to proceed with our analysis.

Novel results:

� A reformulation of the metric tensor defined by [30] after the change of variables is also provided in Section
2, Lemma 2.12 (it is the only original result of that section).

� In Section 3, we derive (informally at first) the equation describing the GMM corresponding to the
Sinkhorn divergence, then properly compute its equivalent after the change of variables studied in [30],
and further rewrite it to exhibit the structure of a constrained rotational motion on the RKHS sphere.
As an example, the Sinkhorn flow of a single Dirac mass is shown to correspond to the Wasserstein case
(i.e. the classical gradient flow of the location of the mass) when the potential is smooth and convex
(Proposition 3.14).

� Section 4 is dedicated to the analysis of the main properties of the flow. Existence, uniqueness, and
contractivity of the flow (Theorem 4.1) are proven Section 4.1 using a discretization of the space. The
long time behavior of the solution is also investigated Section 4.2, where convergence to the minimum of
the energy is proven for a broad class of potentials including non-convex ones (Theorem 4.8).

� In Section 5, the validity of the limit of the SJKO scheme as the time step goes to 0 is proven when the
ambient space X is a finite set of points (Theorem 5.1). We provide generalizations of some results of [30,
Section 3] as required by the proof. We also discuss the reason why the general case is more involved in
Remark 5.8.

� Finally, we present in Section 6 a simple gradient descent scheme to numerically compute SJKO steps and
use it to illustrate the theory on simple examples. The rotational structure of the motion is observed on the
three point space, the Sinkhorn flow of a Dirac mass is compared to its classical flow, and Sinkhorn flows
for both convex and non convex potentials are computed in the Eulerian and Lagrangian discretizations
to exemplify different behaviors and compare with Wasserstein flows.
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2 Preliminaries on Entropic OT and its Riemannian
geometry

2.1 Dual problem

The Entropic OT problem (1.12) has the following dual formulation [16, Remark 4.24]

OTε(µ, ν) = sup
f,g∈C(X )

⟨µ, f⟩+ ⟨ν, g⟩ − ε
〈
µ⊗ ν, exp

(
1
ε (f ⊕ g − c)

)
− 1
〉

(2.1)

with the notation f ⊕ g : (x, y) 7→ f(x) + g(y). This problem has maximizers that we call Schrödinger
potentials fµ,ν , gµ,ν , which are solutions of the Schrödinger system{

fµ,ν = Tε(gµ,ν , ν)

gµ,ν = Tε(fµ,ν , µ)
(2.2)

where we define the Sinkhorn mapping

Tε :

∣∣∣∣∣∣
C(X )× P(X ) −→ C(X )

f, µ 7−→ −ε log
∫
X
exp

(
1
ε (f(x)− c(x, ·))

)
dµ(x).

(2.3)

These potentials are unique up to constant shifts i.e. the set {(fµ,ν + λ, gµ,ν − λ), λ ∈ R} describes all solutions
of (2.2). Moreover, at optimality the loss reads

OTε(µ, ν) = ⟨µ, fµ,ν⟩+ ⟨ν, gµ,ν⟩ (2.4)

meaning that the Schrödinger potentials (fµ,ν , gµ,ν) correspond to the gradients of OTε with respect to the
input measures (µ, ν) (see [21, Proposition 2]). The optimal transport plan in (1.12) is additionally given by

π = exp
(
1
ε (fµ,ν ⊕ gµ,ν − c)

)
(µ⊗ ν). (2.5)

The symmetry of the optimization problem (2.1) and the uniqueness up to constant shifts of the optimal
potentials allows one to choose fµ,ν = gν,µ and in particular we can take fµ,µ = gµ,µ which we shall denote fµ
for short. The Sinkhorn divergence defined by (1.13) is differentiable with gradients given by (fµ,ν−fµ, fν,µ−fν).

2.2 Riemannian Geometry induced by the Sinkhorn divergence

Despite all the advantages of the Sinkhorn divergence, it lacks the properties to define a metric on P(X ), as
√
Sε

does not satisfy the triangle inequality for ε > 0 [30, Section 7.1], contrary to
√
S0 = W2. This has motivated

the recent work [30] to define a Riemannian structure on P(X ) which keeps the geometric faithfulness and
smoothness of the Sinkhorn divergence. This is done by computing its Hessian and using it as metric tensor,
which makes the new metric locally agree with the Sinkhorn divergence. As this theory will be the foundation
necessary to the analysis developed in the present thesis, we summarize the main notations and results that we
will use.

The Hessian is first computed for vertical perturbations, defined as follows.

Definition 2.1 [30, Definition 3.1]. The set of balanced measures is denotedM0(X ) := {σ ∈M(X ) | ⟨σ, 1⟩ = 0}.
Let µ ∈ P(X ), µ̇ ∈M0(X ). The curve

t 7→ µt := µ+ tµ̇ (2.6)
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is a vertical perturbation of µ if ∀t ∈ (−τ, τ), µt ∈ P(X ) for some τ > 0.

Some operators need to be introduced as they appear in the expression of the Hessian.

Definition 2.2 [30, Definition 3.2]. The self transport kernel of µ ∈ P(X ) is defined as

kµ := exp
(
1
ε (fµ ⊕ fµ − c)

)
(2.7)

and the operators Hµ :M(X )→ C(X ) and Kµ : C(X )→ C(X ) are defined as

∀ν ∈M(X ), Hµ [ν] : y 7→
∫
X
kµ(x, y)dν(x) (2.8)

∀ϕ ∈ C(X ), Kµ[ϕ] := Hµ [ϕµ] : y 7→
∫
X
kµ(x, y)ϕ(x)dµ(x). (2.9)

The set of balanced measures M0(X ) corresponding to derivatives of vertical perturbations is the dual of
C(X )/R, the space of functions up to constant shifts (i.e. C(X ) quotiented by the relation f ∼ g ⇐⇒ ∃λ ∈
R, f = g + λ). One can always map a function of C(X ) to its equivalence class in C(X )/R to work in that
space.

The expansion of the Sinkhorn divergence is then given by the following theorem.

Theorem 2.3 [30, Theorem 3.3]. Let (µt)t be a vertical perturbation given by (2.6). Then

1

t2
Sε(µ, µt) −−→

t→0

ε

2

〈
µ̇, (Id−K2

µ)
−1Hµ [µ̇]

〉
. (2.10)

In (2.10), the operator (Id−K2
µ)

−1 is well defined as a bounded operator on C(X )/R [30, Theorem 3.8]. This
is because the optimality condition (2.2) for the self transport of µ can be rewritten as Kµ[1] = 1, giving
(Id −K2

µ)[1] = 0 and obstructing the invertibility on the whole space C(X ). The duality product in (2.10) is
therefore betweenM0(X ) and C(X )/R.

Following the expression of the Hessian, the authors of [30] define the metric tensor as follows.

Definition 2.4 [30, Definition 4.1]. For µ ∈ P(X ), µ̇1, µ̇2 ∈M0(X ), define the metric tensor at µ as

gµ(µ̇1, µ̇2) := ⟨µ̇1, Gµ [µ̇2]⟩ (2.11)

where
Gµ := ε

2(Id−K
2
µ)

−1Hµ :M0(X )→ C(X )/R. (2.12)

The fact that the local behavior of the Sinkhorn divergence is given by this metric tensor will make the SJKO
flows correspond to gradient flows in the manifold (P(X ),g). The proof of Theorem 2.3 involves computing
the time derivatives of the Schrödinger potentials along curves, and this expression will appear when deriving
the limit of the JKO flow.

Proposition 2.5 [30, Proposition 3.11]. Let µt be given by (2.6). Then the potentials ft,s := fµt,µs are
continuously differentiable in C(X )/R with respect to (t, s) in a neighborhood of (0, 0), and we have

∂f0,s
∂s

∣∣∣∣
s=0

= −2Gµ [µ̇] . (2.13)

Next, the article analyzes the metric tensor (2.11) and extends it to the (Cauchy) completion ofM0(X ), which
cöıncides with a subset of a RKHS. Denoting by Hµ the RKHS corresponding to the positive definite (PD)
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kernel kµ, one can see from ∀σ ∈M(X ), Hµ[σ] : y 7→ ⟨σ, kµ(·, y)⟩ and the reproducing kernel property that Hµ

corresponds exactly to the isometry given by the Riesz representation theorem, i.e. it verifies for any σ

∀ϕ ∈ Hµ, ⟨σ, ϕ⟩ = ⟨Hµ[σ], ϕ⟩Hµ
. (2.14)

Therefore, it is naturally defined on the space H∗
µ of continuous linear functionals on Hµ, and takes values in

Hµ. Note that H∗
µ ⊃ M(X ) since Hµ ⊂ C(X ). This also means that Kµ is valued in Hµ. Since there is

conservation of mass and thus perturbations µ̇ have zero total mass, we need to instead consider the space

H∗
µ,0 :=

{
σ ∈ H∗

µ, ⟨σ, 1⟩ = 0
}

(2.15)

which is the dual of Hµ/R. Hµ can then be restricted to an operator H∗
µ,0 → Hµ/R which still corresponds to

the Riesz isometry in the Hilbert space Hµ/R. The following theorem relates H∗
µ,0 andM0(X ), making sense

of the former as the tangent space of P(X ) endowed with the metric tensor gµ.

Theorem 2.6 [30, Theorem 4.5]. The metric tensor gµ is a positive definite quadratic form on M0(X ),
and the completion of that space with respect to this form is H∗

µ,0. There furthermore exists a constant C such
that

∀µ̇ ∈ H∗
µ,0,

ε
2 ∥µ̇∥

2
H∗

µ,0
≤ gµ (µ̇, µ̇) ≤ ε

2C ∥µ̇∥
2
H∗

µ,0
.

The tangent space H∗
µ,0 (isometric to Hµ/R) being a subset of Hµ which is unfortunately dependant on µ,

the authors of [30] perform a change of variables to show that it is isometric to Hc, the RKHS of kernel
kc := exp

(
− c

ε

)
. This change of variables will allow us to simplify the equation of the gradient flow and utilize

the structure of Hc. In the following we denote

aµ := exp
(
1
εfµ
)
, (2.16)

bµ := exp
(
−1

εfµ
)
= a−1

µ . (2.17)

Proposition 2.7 [30, Proposition 4.7]. The map

ιµ :

∣∣∣∣ Hc −→ Hµ

ϕ 7−→ aµϕ

is an isometry.

This gives a change of variables on the tangent space, and the article next considers the corresponding change
of variables on the space of probability measures by considering the maps

A :

∣∣∣∣ P(X ) −→ M(X )
µ 7−→ aµµ

(2.18)

and

B :

∣∣∣∣ P(X ) −→ Hc

µ 7−→ bµ
(2.19)

where we can see that B(µ) = Hc[aµµ] from the optimality condition (2.2). These mappings are appropriate
changes of variables in the sense of the following theorem, whereM+(X ) denotes the set of nonnegative Radon
measures on X .

Theorem 2.8 [30, Theorem 4.8].

(a) The map A is a weak-* homeomorphism onto its image A :=
{
α ∈M+(X )

∣∣ ∥Hc[α]∥Hc
= 1
}
, and A is

weak-* compact.
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(b) The map B is a weak-*-to-weak homeomorphism onto its image B :=
{
b ∈ Hc [M+(X )]

∣∣ ∥b∥Hc
= 1
}
.

Weak and norm convergence agree on the set B which is weakly and norm compact.

These results will allow us to work on B rather than P(X ), and obtain a more interpretable equation (Section
3.2).

To compute the pushforward of the metric tensor g by this change of variables, the article reviews its differential
properties. We briefly introduce the notion of differentiable curve in Topological Vector Spaces (TVSs) used in
the paper (in the following, the TVSs in question will be Banach or Hilbert spaces, with their norm, weak or
weak-* topologies).

Definition 2.9 [30, Definition 4.10]. Let (X, T ) be a TVS and I a subinterval of R. A path (xs)s∈I valued
in X is said to be T -differentiable at t ∈ I if 1

u (xt+u − xt) converges in T to a limit ẋt as u → 0. If X is
normed and T is the norm topology, we simply call the curve differentiable.

The relationship between the derivatives of the curve on B and that on P(X ) is explicit, as given by the
following lemma. We will use this expression to relate the differential equation on P(X ) to that on B.

Lemma 2.10 [30, Lemma 4.12]. Let (µt)t be a path in P(X ) such that the curve (bt)t := (B(µt))t is
continuous and weakly differentiable in Hc at t = 0. Then (µt)t is also weakly differentiable in Hµ0 at t = 0
and the derivatives verify

Hµ [µ̇] = (Id +Kµ)[aµḃ] (2.20)

where µ := µ0, µ̇ := µ̇0, ḃ := ḃ0.

The pushforward of the metric tensor is then given by the following theorem, where for b ∈ B we denote
b⊥ :=

{
h ∈ Hc

∣∣ ⟨b, h⟩Hc
= 0
}
.

Theorem 2.11 [30, Theorem 4.11]. Let (µs)s be a path valued in P(X ) such that the path (bs)s = (B(µs))s

is continuous and weakly differentiable in Hc at t. Then
〈
ḃt, bt

〉
Hc

= 0, (µs)s is weakly differentiable at t in

H∗
µt

and

gµt(µ̇t, µ̇t) = g̃µt(ḃt, ḃt)

where for µ ∈ P(X ), a := aµ, b := B(µ), we define for ḃ ∈ b⊥

g̃µ

(
ḃ, ḃ
)
:= ε

2

(〈
ḃ, ḃ
〉
Hc

+ 2
〈
aḃ, (Id−Kµ)

−1
[
aḃ
]〉

L2
µ(X )

)
, (2.21)

L2
µ(X ) being the Hilbert space of functions X → R square integrable against µ.

We provide in this thesis the expression of the operator G̃µ corresponding to Gµ (defined in (2.12)) after
the change of variables, as it was absent from the original article. It will help simplify computations when
manipulating the metric tensor.

Lemma 2.12. The metric tensor on Hc defined by (2.21) can be rewritten as

g̃µ

(
ḃ, ḃ
)
=
〈
ḃ, G̃µ

[
ḃ
]〉
Hc

(2.22)

where the operator G̃µ : b⊥ → b⊥ is defined by

G̃µ

[
ḃ
]
:= ε

2b (Id +Kµ) (Id−Kµ)
−1
[
aḃ
]
. (2.23)

Proof. One can remark that ∀ϕ, ψ ∈ Hµ, ⟨ϕ, ψ⟩L2
µ(X ) = ⟨Kµϕ, ψ⟩Hµ

, and thus

g̃µ

(
ḃ, ḃ
)
= ε

2

(〈
ḃ, ḃ
〉
Hc

+ 2
〈
aḃ,Kµ (Id−Kµ)

−1
[
aḃ
]〉
Hµ

)
9



which after using the isometry Hµ ∋ ϕ 7→ bϕ ∈ Hc gives

g̃µ

(
ḃ, ḃ
)
= ε

2

(〈
ḃ, ḃ
〉
Hc

+ 2
〈
ḃ, bKµ (Id−Kµ)

−1
[
aḃ
]〉
Hc

)
= ε

2

〈
ḃ, baḃ+ 2bKµ (Id−Kµ)

−1
[
aḃ
]〉
Hc

= ε
2

〈
ḃ, b
(
Id + 2Kµ (Id−Kµ)

−1
) [
aḃ
]〉
Hc

=
〈
ḃ, ε2b (Id +Kµ) (Id−Kµ)

−1
[
aḃ
]〉
Hc

.

To see that G̃µ is valued in b⊥, observe that using the same computation〈
b, G̃µ

[
ḃ
]〉
Hc

= ε
2

(〈
ḃ, b
〉
Hc

+ 2
〈
aḃ, (Id−Kµ)

−1 [ab]
〉
L2
µ(X )

)
where the first term in the sum on the right hand side is null for ḃ ∈ b⊥ and the second as well since ab = 1 is
a constant and thus null in Hµ/R. □

In the article, the authors also get a version of the bound in Theorem 2.6 after the change of variables, given
below. These bounds will allow us to work within the Hilbertian structure of Hc rather than the more complex
Riemannian structure of (B, g̃).

Proposition 2.13 [30, Proposition 4.14]. Let µ ∈ P(X ), ḃ ∈ Hc with ḃ ∈ (B(µ))⊥. Then there exists a
constant C such that

ε
2

∥∥∥ḃ∥∥∥2
Hc

≤ g̃µ

(
ḃ, ḃ
)
≤ ε

2C
∥∥∥ḃ∥∥∥2

Hc

. (2.24)

Using the metric tensor, the article defines the corresponding Riemannian distance by minimizing lengths of
paths. We write it here as a distance on B since it is the space we will work in, but it is in direct correspondence
with a distance on P(X ) through the change of variables.

Definition 2.14 [30, Definition 5.1]. For b0, b1 ∈ B, define the set of admissible paths P
(
b0, b1

)
as the

collection of curves (bt)t valued in B, which belong to the Sobolev space H 1([0, 1],Hc) of square integrable,
differentiable curves [0, 1] → Hc with square integrable derivative, and have end points b0 = b0, b1 = b1. The
Riemannian distance dS is then defined by

dS
(
b0, b1

)
:=

 inf
(bt)t∈P (b0,b1)
µt:=B−1(bt)

∫ 1

0
g̃µt

(
ḃt, ḃt

)
dt


1
2

. (2.25)

We conclude this section with the following result, guaranteeing existence of geodesics for this distance as well
as an estimate with regards to the norm distance on Hc, that we will use when proving the limit of the SJKO
scheme Section 5 by using a geodesic interpolation between points of the sequence.

Theorem 2.15 [30, Theorems 5.2 and 5.3]. The function dS is a geodesic distance (i.e. there exists a
minimizer for the right hand side of (2.25)), and there exists a constant C such that√

ε
2

∥∥b0 − b1∥∥Hc
≤ dS

(
b0, b1

)
≤ C

√
ε
2

∥∥b0 − b1∥∥Hc
. (2.26)

10



3 The differential equation and its structure

3.1 Derivation of the equation and change of variables

In this section, we start by informally deriving the limit of the SJKO scheme, the rigorous proof (in the case
of a discrete space) being postponed to Section 5. We obtain a differential equation that we reformulate after
the change of variables µ → B(µ), which allows us to define precisely what we consider a solution of the flow,
whose existence is proven later in Section 4.

We start from the SJKO scheme
µτk+1 ∈ argmin

µ∈P(X )
⟨µ, V ⟩+ 1

2τSε(µ, µ
τ
k) (3.1)

and derive the first order optimality conditions, which give

∃p ∈ C(X ),


1
2τ

(
fµτ

k+1,µ
τ
k
− fµτ

k+1

)
+ V + p = 0

p ≤ 0〈
µτk+1, p

〉
= 0

µτk+1 ∈ P(X )

(3.2)

where the first equality is understood in C(X )/R. We can see a difference quotient of Schrödinger potentials
appear, which is why the Hessian will be involved in the limit: due to the fact that for appropriate curves (µt)t,

denoting ft,s := fµt,µs , we have −1
2

∂ft,s
∂s

∣∣∣
s=t

= Gµt [µ̇t] from Proposition 2.5, (3.2) will intuitively correspond at

the limit to the existence of pt ∈ C(X ) such that
Gµt [µ̇t] + V + pt = 0

pt ≤ 0

⟨µt, pt⟩ = 0

µt ∈ P(X ).

(3.3)

(3.4)

(3.5)

(3.6)

This can also be seen as the equation of the flow that would arise if we replaced Sε in the SJKO scheme by its
local expansion in terms of the metric tensor.

We will omit the dependency in t to ease the notations for now. We next consider the conditions (3.3–3.6) as our
object of study, and rigorously rewrite them after the change of variables b := B(µ) = Hc[aµ] with a := aµ (we
intentionally forget the dependency in µ in the notation for convenience). Firstly, one can compute Gµ [µ̇] thanks

to the fact that Hµ [µ̇] = (Id +Kµ)
[
aḃ
]
(by Lemma 2.10) and Gµ [µ̇] = ε

2 (Id−Kµ)
−1 (Id +Kµ)

−1Hµ [µ̇],

yielding

Gµ [µ̇] =
ε
2 (Id−Kµ)

−1
[
aḃ
]
. (3.7)

To make the parallel with the Riemannian gradient flow on Hc, we aim to make the metric tensor G̃µ from
Lemma 2.12 appear, so we compose (3.3) by the invertible operator I +Kµ [30, Theorem 3.8] and multiply by
b > 0 to obtain

Gµ[µ̇] + V + p = 0 ⇐⇒ G̃µ[ḃ] +
2
εb (V +Kµ[V ] + (I +Kµ)[p]) = 0, (3.8)

where we can compute

∀x ∈ X , bKµ[V ](x) =

∫
exp

(
1
ε (fµ − c(x, ·))

)
V dµ

= Hc[V aµ](x)

= Hc

[
V H−1

c [b]
]
(x).

(3.9)
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Remark 3.1. It must be highlighted that a priori, multiplying b ∈ Hc by V ∈ C(X ) only yields an element
of C(X ) and not necessarily Hc.

In the following, we drop the square brackets to ease the notations (by seeing V as an operator C(X )→ C(X )
corresponding to pointwise multiplication). We also simplify the notation of HcV H

−1
c by analogy with the

adjoint operator as motivated by the following lemma.

Lemma 3.2. Let V ∗ := HcV H
−1
c : Hc [M(X )] → Hc. It is a linear continuous operator, and for g, h ∈

Hc [M(X )], denoting abusively ⟨g, V h⟩Hc
:=
〈
H−1

c g, V h
〉
we have

⟨g, V h⟩Hc
= ⟨V ∗g, h⟩Hc

. (3.10)

Proof. Observe that V ∗ is well defined, as multiplying a signed measure by a continuous function yields a
signed measure again. The linearity of V ∗ is evident and its continuity follows from that of H−1

c on Hc[M(X )]
(see Lemma A.3), weak-*-to-weak-* continuity of multiplying measures by V , and weak-*-to-norm continuity
of Hc [30, Lemma B.2]. We obtain the ’adjointedness’ by computing

⟨g, V h⟩Hc
=
〈
H−1

c g, V h
〉

=
〈
V H−1

c g, h
〉

=
〈
HcV H

−1
c g, h

〉
Hc
.

□

In order to rewrite the term involving p in (3.8), notice that conditions (3.4–3.5) can be written as{
p ≤ 0
⟨µ, p⟩ = 0

⇐⇒
{
p ≤ 0

p
µ
= 0

(3.11)

⇐⇒
{
p ≤ 0
⟨aµ, p⟩ = 0

(3.12)

⇐⇒
{
p ≤ 0〈
H−1

c b, p
〉
= 0

(3.13)

where
µ
= denotes equality µ-a.e. We give a name to the conditions (3.13) motivated by their correspondence

with a Lagrange multiplier.

Definition 3.3. Define the cone K := Hc[M+(X )]. For b ∈ K, the set of pressure vectors at b is defined as

Pb :=
{
p ∈ C(X )

∣∣ p ≤ 0 and
〈
H−1

c b, p
〉
= 0
}
. (3.14)

From (3.11) it is evident that ∀p ∈ Pb,Kµ[p] = 0, and to further simplify (3.8) we state the following ’conic’
property of the set Pb.

Lemma 3.4. For b ∈ K and any continuous function g > 0,

p ∈ Pb ⇐⇒ gp ∈ Pb. (3.15)

Proof. The result is obtained by the same reasoning as (3.11–3.12), substituting µ by H−1
c b and a by g. □

We have therefore rephrased the flow as

∃p ∈ Pb, G̃µḃ+ (V + V ∗)b+ p = 0. (3.16)

12



Remark 3.5. The potential energy, linear in the variable µ, is in fact quadratic in the variable b:

⟨µ, V ⟩ = ⟨aµ, V b⟩
=
〈
H−1

c b, V b
〉
.

Writing this last term as ⟨b, V b⟩Hc
with the same abuse as in Lemma 3.2, we can see intuitively that the gradient

of this energy for ⟨·, ·⟩Hc
would correspond to V b + V ∗b, meaning the flow (3.16) indeed corresponds to what

we would expect to get when deriving the gradient flow of this energy in the space Hc endowed with G̃. In the
following, we shall denote indiscriminately E(µ) = ⟨µ, V ⟩ and E(b) =

〈
H−1

c b, V b
〉
.

Remark 3.6. We can see that not all components of (3.16) are in Hc since V b ∈ C(X ) highlighted in Remark
3.1, and p is also in C(X ) generically. We shall see Section 4.1 that this subtlety disappears in the case where
X is finite, allowing us to work entirely within Hc and utilize its Hilbert space structure, before generalizing
the results to any compact space.

We can now define rigorously the notion of solution to our equation.

Definition 3.7. Let V ∈ C(X ) and b0 ∈ B. We say that a curve (bt)t valued in B is a Sinkhorn potential
flow of V starting at b0 if it belongs to the Sobolev space H 1([0,+∞),Hc) of square integrable, differentiable
curves [0,+∞)→ Hc with square integrable derivative, and verifies for Lebesgue almost every t

∃pt ∈ Pbt, G̃µt ḃt + (V + V ∗)bt + pt = 0 (3.17)

as an equality between functions of C(X ), where µt := B−1(bt).

The existence and uniqueness being given later in Theorem 4.1, we now state the link of such flows with the
flow in the variable µ shown above as the following proposition.

Proposition 3.8. For a curve (µt)t admissible in the sense that (bt)t = (B(µt))t is in H 1([0,+∞),Hc), it
verifies for Lebesgue-a.e. t the conditions (3.3–3.6) if and only if b is a Sinkhorn flow of the potential V .

Thanks to this result, we can analyze the equation in the variable b knowing that it is a one to one correspondence
with the limiting equation of the JKO flow. In the following section, we further rephrase equation (3.17) to
exhibit more structure.

3.2 The structure of the flow

First, we highlight the structure of pressure vectors as outward normal to the cone K, otherwise seen as the
subgradient of the indicator of this cone which will be useful when considering the finite space case Section 4.1.

Proposition 3.9. Denote ιK the convex indicator of K defined by

ιK : b 7→
{

0 if b ∈ K
+∞ otherwise.

Then, its subgradient ∂ιK (understood for the dot product ⟨·, ·⟩Hc
) with domain K verifies

∀b ∈ K, ∂ιK(b) = Hc ∩Pb. (3.18)

Proof. For b ∈ K (i.e. ιK(b) = 0), from the definition of subdifferential

∂ιK(b) =
{
p ∈ Hc

∣∣∣ ∀b ∈ Hc,
〈
p, b̄− b

〉
Hc
≤ ιK(b)

}
13



and the inequality is evidently verified for b /∈ K, yielding

∂ιK(b) =
{
p ∈ Hc

∣∣∣ ∀b ∈ K, 〈p, b− b〉Hc
≤ 0
}

=
{
p ∈ Hc

∣∣ ∀b ∈ K, 〈H−1
c b, p

〉
≤
〈
H−1

c b, p
〉}
.

For p to verify this last condition, taking successively b̄ = 2b and b̄ = 1
2b one must have

〈
H−1

c b, p
〉
= 0, and then

taking b = Hcδx with varying x ∈ X gives p ≤ 0. Conversely, if
〈
H−1

c b, p
〉
= 0 and p ≤ 0 it is easy to see that

p verifies the condition. □

To better study (3.16), we would like to isolate ḃ and thus compose by the inverse of the metric tensor. Denoting
cl the closure, we can see that G̃−1

µ : h 7→ 2
εb(I −Kµ) (I +Kµ)

−1 [ah] is in fact well defined as an operator on

C(X ), which is still invertible on clC(X )

(
b⊥
)
=
{
h ∈ C(X )

∣∣ 〈H−1
c b, h

〉
= 0
}
thanks to [30, Theorem 3.8]. We

can therefore state the following results.

Proposition 3.10. For b ∈ B, there holds

G̃−1
µ (V + V ∗)b = 2

ε (V − V
∗) b, (3.19)

Pb ⊂ ker
(
G̃µ − ε

2 Id
)
, (3.20)

G̃µPb = Pb. (3.21)

Proof. Recall that from (3.9) V ∗b = bKµV , and thus

G̃−1
µ (V + V ∗)b = 2

εb(I −Kµ) (I +Kµ)
−1 ab (I +Kµ)V

= 2
εb(I −Kµ)V

= 2
ε (V − V

∗)b

whence (3.19). Now let p ∈ ∂ιK(b), for any g ∈ Hc we have from Lemma 2.12〈
G̃µp, g

〉
Hc

= ε
2

(
⟨p, g⟩Hc

+ 2
〈
ap, (Id−Kµ)

−1 ag
〉
L2
µ(X )

)
= ε

2 ⟨p, g⟩Hc

since p
µ
= 0 from (3.11), whence G̃µp =

ε
2p. From Proposition 3.9, the density of Hc in C(X ) and the continuity

of the operator G̃µ we obtain (3.20). Using the conic property given by Lemma 3.4 and the invertibility of G̃µ

on Pb ⊂ clC(X )

(
b⊥
)
(from Definition 3.3) we deduce (3.21). □

We now turn briefly our attention to the operator appearing on the left hand side of (3.19) and highlight its
properties before rewriting the flow.

Proposition 3.11. The operator W := 2
ε (V − V

∗) : Hc [M(X )]→ C(X ) is continuous and verifies

∀g, h ∈ Hc [M(X )] ,
〈
H−1

c g,Wh
〉
= −

〈
H−1

c h,Wg
〉
. (3.22)

Proof. Direct from Lemma 3.2. □

We can now conclude this section by rewriting the Sinkhorn potential flow (3.17).

Proposition 3.12. For a curve (bt)t ∈ H 1([0,+∞),Hc) valued in B, the Sinkhorn potential flow (3.17) is
equivalent the differential inclusion

ḃt +Wbt +Pbt ∋ 0 (3.23)
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understood for a.e. t.

Proof. Since for any b, Pb ⊂ clC(X )

(
b⊥
)
and Wb ∈ clC(X )

(
b⊥
)
from Proposition 3.11, using the invertibility

on G̃µ on that set with Proposition 3.10 yields the equivalence. □

Remark 3.13. Proposition 3.11 highlights a ’skew symmetry’ property of W, and thus the ODE without
pressure constraints ḃ + Wb will intuitively correspond to rotational motion (due to the Stone theorem [31,
Theorem 1.10.8]). We can thus see the two forces at play in the differential inclusion (3.23): this rotational
motion induced by the gradient of the energy, and the pressure constraining the flow within the admissible set
K corresponding to nonnegative measures. We will observe this behavior numerically in Section 6.

In the remainder of this report, we will indiscriminately use the three expressions of the flow (3.3–3.6), (3.17)
and (3.23) since Proposition 3.8 and Proposition 3.12 guarantee their equivalence.

3.3 A particular case: motion of a Dirac measure

An interesting case to understand the behavior of the flow is that of a Dirac mass i.e. a single particle. In
the Wasserstein case and for a smooth potential, the flow corresponds to the continuity equation for a single
particle i.e. the classical gradient flow of the potential V . We obtain a similar result in the case of a Sinkhorn
flow.

Proposition 3.14. Let X be a compact convex subset of Rd, and c(x, y) := ∥x− y∥22 be the square Euclidean
distance on that space. Consider a particle following a smooth trajectory, i.e. an absolutely continuous curve
(xt)t ⊂ X , let µt := δxt and bt := B(µt) the corresponding flow on B. Then for any t holds

ḃt +Wbt +Pbt ∋ 0 ⇐⇒ ẋt ∈ −∂V (xt). (3.24)

In particular, for V convex and b0 = B(δx0), the Sinkhorn potential flow (bt)t of V starting at b0 can be written
bt = B(δxt) with xt the unique subdifferential flow of V starting at x0.

Proof. Observe that for any x ∈ X , fδx verifies from the Schrödinger system (2.2)

∀y, fδx(y) = ∥x− y∥
2
2 − fδx(x)

and in particular for y = x one has fδx(x) = 0, yielding

∀y, fδx(y) = ∥x− y∥
2
2

and thus we obtain
bt(y) = exp

(
−1

ε ∥xt − y∥
2
2

)
.

Consequently, one can compute
∀y, ḃt(y) = 2

ε ⟨ẋt, y − xt⟩Rd bt(y).

Additionally, since H−1
c bt is supported on {xt},

V H−1
c bt = V (xt)H

−1
c bt

and thus
V ∗bt = HcV H

−1
c bt

= V (xt)bt
(3.25)

We can now compute ḃt+Wbt and check the necessary and sufficient condition for it to be an element of −Pbt.
We obtain

ḃt(y) +Wbt(y) =
2
ε (V (y)− V (xt) + ⟨ẋt, y − xt⟩Rd) bt(y).
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The left side is evidently 0 for y = xt, and it is nonnegative for all y if and only if −ẋt is a subgradient of V ,
giving (3.24). The rest of the statement is an immediate consequence. □

Remark 3.15. A simple corallary of Proposition 3.14 is that for V convex, the flow of a particle will converge
to the minimum of V on X as it is well-known for classical subgradient flows. However, in the non-convex
case, the subgradient flow of V may be undefined, yet we will see that the Sinkhorn potential flow still exists
(Theorem 4.1), so the two notions will differ. This leaves the possibility that, unlike the classical subgradient
flow or the Wasserstein gradient flow which get stuck in local minima, the Sinkhorn flow could still converge to
a global minimum. This is addressed Section 4.2.
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4 Well posedness and properties

4.1 Existence, uniqueness, contractivity

This section is dedicated to the proof of the following theorem giving the well-posedness of the Sinkhorn flow
and its contractivity.

Theorem 4.1. For any V ∈ C(X ) and b0 ∈ B, there exists a unique Sinkhorn potential flow (bt)t of V starting
at b0 which additionally verifies

(a) The norm
∥∥∥ḃt∥∥∥

Hc

decreases.

Moreover,

(b) The flow is contractive i.e. if
(
b1t
)
t
,
(
b2t
)
t
are two Sinkhorn potential flows of V with possibly different

starting points, then t 7→
∥∥b1t − b2t∥∥Hc

decreases.

To prove Theorem 4.1, we first consider the case where the space is finite i.e. X = {x1, . . . , xn} for some n,
in order to be able to utilize the Hilbert space structure of Hc and apply well-studied results of the theory of
differential inclusions in Hilbert spaces despite the difficulty mentioned in Remark 3.6. This greatly simplifies the
situation as it means that C(X ) ≃ Rn, and since Hc is a dense linear subspace of the former we have Hc = C(X )
and the Hilbertian norm topology and supremum norm topology coincide (as do all norm topologies on finite
dimensional spaces). The whole equation can therefore be understood in Hc, and the notation in Lemma 3.2 is
no longer abusive meaning that V ∗ becomes the true adjoint of V . Additionally, from Proposition 3.9 we have
in this case P = ∂ιK which will prove useful. We will be able to obtain in this simplified case the following
results, which we state for a flow on K more generally than B since W becomes well defined and continuous on
the whole space (as it essentially becomes a matrix).

Theorem 4.2. Assume that X is a finite set of points. Then for any b0 ∈ K, the differential inclusion problem{
ḃt +Wbt +Pbt ∋ 0

b0 = b0
(4.1)

has a unique absolutely continuous solution on the time interval [0,∞). It additionally verifies the following:

(a) ∀t, bt ∈ K.

(b) ∀t, ∥bt∥Hc
=
∥∥b0∥∥Hc

.

(c) The curve b has a right-hand derivative verifying ḃt+ = −Wbt − pt with pt = argmin
p∈Pbt

∥Wbt + p∥Hc
.

(d) The norm
∥∥∥ḃt∥∥∥

Hc

decreases.

To prove Theorem 4.2, we will use the Hille-Yosida theorem for multivalued operators, a result utilizing the
notion of maximal monotonicity of an operator which we briefly recall.

Definition 4.3 [32, Section 1.1]. Let (H, ⟨·, ·⟩H) be a Hilbert space and M : H⇒ H a multivalued operator
i.e. a set-valued map with nonempty domain dom (M) := {x ∈ H,Mx ̸= ∅}. We denote [x, y] ∈ M to say
y ∈Mx. M is said to be monotone if

∀[x, y], [x′, y′] ∈M,
〈
x′ − x, y′ − y

〉
≥ 0.

17



A monotone operator is further called maximal if no other monotone operator has a strictly greater graph (in
the sense of inclusion).

Lemma 4.4. Under the assumption of Theorem 4.2, W : Hc → Hc is maximal monotone.

Proof. The monotonicity of W is a simple consequence of Proposition 3.11 which translates to actual skew-
symmetry for ⟨·, ·⟩Hc

in our case. Its maximality follows from its linearity and continuity, by applying [33,
Proposition 2.7]. □

We now have the tools to prove Theorem 4.2.

Proof of Theorem 4.2. The maximal monotonicity of W is given by Lemma 4.4, and that of P = ∂ιK is
well-known, see e.g. [34, Theorem 2.15]. We verify the condition of [35, Theorem 1 (b)] to ensure the sum is
also maximal monotone: for any b ∈ K then of course b ∈ cl (dom (W)) = Hc and b ∈ cl (dom (ιK)) = K. W is
additionally bounded since linear continuous, so the referenced theorem applies giving that W+P is maximal
monotone. The existence and uniqueness of a solution is given by [32, Theorem 10] (originally found in [36,
Lemma 3.2]). Assertions (a), (c) and (d) correspond to [32, Theorem 10, 2. and 3.], and finally observe that
for any p ∈ Pb,

⟨Wb+ p, b⟩Hc
= 0

from Proposition 3.11 (3.22) and the definition of P (Definition 3.3), and therefore the solution verifies

d

dt

(
1
2 ∥b∥

2
Hc

)
=
〈
ḃ, b
〉
Hc

= 0

whence the fact (b). □

Next, we state a property regarding the dissipation of energy over the flow which is expected for gradient flows
on finite-dimensional manifolds, and deduce properties that will be necessary when proving the generalization
of Theorem 4.2.

Proposition 4.5. Let (bt)t follow the flow on a finite space given by Theorem 4.2, and denote the energy E
following Remark 3.5. Then we have for almost every t

d

dt
E(bt) = −g̃µt

(
ḃt, ḃt

)
. (4.2)

In particular:

(a) t 7→ E(bt) decreases

(b)

∫ +∞

0

∥∥∥ḃ∥∥∥2
Hc

dt ≤ 2
ε

(
sup

µ∈P(X )
E(µ)− inf

µ∈P(X )
E(µ)

)
.

Proof. The time derivative of the energy is given by

d

dt
⟨bt, V bt⟩Hc

=
〈
ḃt, (V + V ∗)bt

〉
Hc

.

Then due to Theorem 4.2 (c) and the fact that b has an a.e. derivative which is equal to the right derivative
where defined, 〈

ḃt, (V + V ∗)bt

〉
Hc

= −⟨Wbt, (V + V ∗)bt⟩Hc
− ⟨(V + V ∗)bt, pt⟩Hc

(4.3)

where pt = argmin
p∈Pbt

∥p+Wbt∥Hc
. Dropping the dependency in t and denoting g := Wb for convenience, this

writes p = proj (−g|Pb) (where proj is the Hilbert projection on a closed convex set) which equivalently means

∀p ∈ Pb, ⟨g + p, p− p⟩Hc
≤ 0
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From Definition 3.3 it is clear that we can take p = 0, so that ⟨g + p, p⟩Hc
≤ 0. From Lemma 3.4 we can also

take p = 2p to get −⟨g + p, p⟩Hc
≤ 0 and thus ⟨p, p⟩Hc

= −⟨g, p⟩Hc
. Now since G̃µp = ε

2p from Proposition

3.10 (3.20) and G̃µ is self-adjoint, using Proposition 3.10 (3.19) to write (V + V ∗)b = G̃µg in (4.3) we get

d

dt
⟨bt, V bt⟩Hc

= −
(〈

g, G̃µg
〉
Hc

+
〈
G̃µg, p

〉
Hc

)
= −

(〈
g, G̃µg

〉
Hc

+ 2
〈
G̃µg, p

〉
Hc

−
〈
G̃µg, p

〉
Hc

)
= −

(〈
g, G̃µg

〉
Hc

+ 2
〈
G̃µg, p

〉
Hc

− ε
2 ⟨g, p⟩Hc

)
= −

(〈
g, G̃µg

〉
Hc

+ 2
〈
G̃µg, p

〉
Hc

+ ε
2 ⟨p, p⟩Hc

)
= −

(〈
g, G̃µg

〉
Hc

+ 2
〈
G̃µg, p

〉
Hc

+
〈
p, G̃µp

〉
Hc

)
= −

〈
g + p, G̃µ (g + p)

〉
Hc

= −g̃µt

(
ḃt, ḃt

)
.

The fact (a) follows from the fact that g̃µ is nonnegative and thus the derivative is nonpositive. For (b), first
notice that the right hand terms are well defined since E is a continuous functional on the (weak-*) compact
space P(X ). (E(bt))t is decreasing lower bounded and thus convergent to some E∞, yielding∫ +∞

0
g̃µt

(
ḃt, ḃt

)
dt = E(b0)− E∞

≤ sup
µ∈P(X )

E(µ)− inf
µ∈P(X )

E(µ)

and the fact that ε
2

∥∥∥ḃt∥∥∥2
Hc

≤ g̃µt

(
ḃt, ḃt

)
from Proposition 2.13 gives the result. □

Now that we have established results in the case of a finite space, we aim to generalize them to any compact
(and thus separable) space and prove Theorem 4.1. To obtain existence, we will discretize the space X and
’approximate’ it with some Xn containing n points as mentioned at the beginning of this section, but doing so
will yield solutions that are functions on Xn, which we need to extend to X so that the sequence is contained
in a fixed space where we can take the limit. This is done using the following lemma.

Lemma 4.6. Let Xn = {x1, . . . , xn} ⊂ X . For a PD kernel k on X , denote Hk the corresponding RKHS and
Hn

k the RKHS for the restriction kn of k to Xn. Then there is an isometric embedding In : Hn
k → Hk verifying

for any hn ∈ Hn
k

∀i ∈ {1, . . . , n} , In[hn](xi) = hn(xi). (4.4)

Proof. Since we have by construction of the RKHS

Hn
k = span (kn(x1, ·), . . . , kn(xn, ·)) ,

We define for hn =
∑n

i=1 h
n
i k

n(xi, ·) its embedding

In[hn] :=
n∑

i=1

hni k(xi, ·). (4.5)
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It is evidently linear, and we have by the reproducing kernel property that

∥In[hn]∥2Hk
=

n∑
i,j=1

hni h
n
j k(xi, xj)

=

n∑
i,j=1

hni h
n
j k

n(xi, xj)

= ∥hn∥2Hn
k

which makes In an isometry. The interpolation property (4.4) is clear from the definition of the embedding
(4.5). □

We now state the compactness necessary to obtain a limit as n→ +∞.

Lemma 4.7. Let X be a compact metric space, take {xi}∞i=1 a countable set dense in X , and denote for
all n ≥ 1 Xn := {xi}ni=1. Let T > 0 be fixed, (bnt )t∈[0,T ] be the unique Sinkhorn potential flow on [0, T ] with
ambient space Xn guaranteed by Theorem 4.2, and denote bnt := In [bnt ] the corresponding extension to X as
in Lemma 4.6. Then the sequence (bn)n has a subsequence converging uniformly in C([0, T ],Hc) to some b and(
ḃn
)
n
has a subsequence converging weakly in L2([0, T ],Hc) to the derivative ḃ of b, which additionally verifies

∫ T

0

∥∥∥ḃt∥∥∥2
Hc

dt ≤ 2
ε

(
sup
P(X )

E − inf
P(X )

E

)
. (4.6)

Proof. Observe that from the linearity and continuity of In, one has ḃnt = In
[
ḃnt

]
. From Proposition 4.5 (b),

we obtain that ∫ T

0

∥∥∥ḃnt ∥∥∥2Hc

dt =

∫ T

0

∥∥∥ḃnt ∥∥∥2Hn
c

dt

≤ 2
ε

(
sup
P(X )

E − inf
P(X )

E

)

and thus the sequence (ḃn)n is bounded in L2([0, T ];Hc) which is a Hilbert space with the usual inner product.
As bounded sets in reflexive Banach spaces are weak-* compact (from the Banach-Alaoglu theorem, see e.g.
[37, Theorem 4.2]), we can extract a weak-* converging subsequence with limit denoted ḃ. The statement (4.6)
is consequence of the lower semi continuity of the norm for the weak-* topology. Now considering that bn is in
the Sobolev space H 1([0, T ];Hc) due to Lemma 4.6 and Bochner’s theorem [38, Theorem 2.5], we use Morrey’s

inequality (Lemma B.4) and the boundedness of
∥∥∥ḃn∥∥∥

L2([0,T ];Hc)
, giving existence of a constant C such that

∀n,∀t, s, ∥bnt − bns ∥Hc
≤ C |t− s|

1
2 .

Since for all t, (bnt )n ⊂ B which is norm compact thanks to Theorem 2.8 (b), we have the required assumptions
for the Arzelà-Ascoli theorem [39, Lemma 1] which yields a uniformly converging subsequence with limit b.
The limit ḃ of the derivatives has coherent notation as it is indeed the derivative of b: uniform convergence
implies L2([0, T ],Hc) convergence (by the dominated convergence theorem), and thus implies distributional
convergence. □

We now have the necessary tools to prove Theorem 4.1. The methodology to prove existence will be similar to
[1, Proposition 2.3], but the discretization is in space rather than time.
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Proof of Theorem 4.1. We first prove the existence. Consider the converging subsequences given by
Lemma 4.7 (which we identify with the sequences to simplify notation). Define

pnt := −
(
ḃnt +Wbnt

)
and

pt := −
(
ḃt +Wbt

)
.

Showing pt ∈ Pbt for almost every t will yield the existence. From the construction of bn it holds that

∀i ∈ {1, . . . , n} , pnt (xi) ≤ 0

for almost every t, and thus for an arbitrary continuous nonnegative (scalar) curve (λt)t ∈ C([0, T ];R) and
i ∈ {1, . . . , n}, ∫ T

0
λtp

n
t (xi)dt ≤ 0. (4.7)

Take x ∈ X . By density, there is a sequence of indices (in)n such that xin → x, and we can additionally take
in ≤ n for all n. We abusively write n instead of in to simplify notations. Then holds∫ T

0
λtp

n
t (xn)dt = −

∫ T

0
λt(Wbnt )(xn)dt−

∫ T

0
λtḃ

n
t (xn)dt

= −
∫ T

0
λt ⟨δxn ,Wbnt ⟩ dt−

∫ T

0
λt

〈
ḃnt , kc(xn, ·)

〉
Hc

dt.

The first term can be passed to the limit since easily δxn converges weak-* to δx and for all t Wbnt → Wbt
strongly in C(X ), so the duality pairing converges [40, Proposition 3.13 (iv)], and the dominated convergence
theorem gives convergence of the integral. Similarly, for the second term, the convergence of ḃn is weak in
L2([0, T ],Hc) and that of (λtkc(xn, ·))t is pointwise in time by Lemma A.2 and thus strong in the same L2

space. This allows one to pass the duality pairing to the limit. We therefore get∫ T

0
λtp

n
t (xn)dt→

∫ T

0
λt

(
−Wbt(x)− ḃt(x)

)
=

∫ T

0
λtpt(x)

which combined with (4.7) yields ∫ T

0
λtpt(x)dt ≤ 0 (4.8)

and the arbitrariness of λ and x give that pt ≤ 0 for almost every t. We also have for a.e. t〈
H−1

c bt, pt
〉
= −

〈
H−1

c bt,Wbt
〉
−
〈
bt, ḃt

〉
Hc

= 0

since Proposition 3.11 gives that the first term is null, and the fact that the norm of bt remains constant makes
the second term null as well. We thus have pt ∈ Pbt for a.e. t, concluding the proof of existence on [0, T ]. The
uniqueness which we next prove combined with the arbitrariness of T will allow one to extend the solution to
[0,+∞), still in H 1([0,+∞),Hc) since the bound (4.6) in Lemma 4.7 is independent from T . We now prove
the contractivity (b), which implies uniqueness when the initial point is fixed. Denoting p1, p2 pressure curves
corresponding to the solutions b1, b2 respectively, the chain rule gives

d

dt

∥∥b1t − b2t∥∥2Hc
=
〈
ḃ1t − ḃ2t , b1t − b2t

〉
Hc

= −
〈
H−1

c

[
b1t − b2t

]
,W(b1t − b2t ) + p1t − p2t

〉
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and Proposition 3.11 gives that the term inW vanishes. We rewrite the remaining term using that
〈
H−1

c bit, p
i
t

〉
=

0 (i ∈ {1, 2}), yielding

−
〈
H−1

c

[
b1t − b2t

]
, p1t − p2t

〉
=
〈
H−1

c b1t , p2
〉
+
〈
H−1

c b2t , p1
〉

≤ 0

and thus d
dt

∥∥b1t − b2t∥∥2Hc
≤ 0 which gives the contractivity. Now if b follows a Sinkhorn flow, evidently (bt+h)t

also does for any h > 0, and as a result for s > t

∥bs+h − bs∥Hc
≤ ∥bt+h − bt∥Hc

which after dividing by h and making h→ 0 gives
∥∥∥ḃs∥∥∥

Hc

≤
∥∥∥ḃt∥∥∥

Hc

and thus (a) holds. □

4.2 Long time behavior

We investigate in this section the behavior of the flow as t→ +∞, and show that it converges to the minimizer
of the energy under mild conditions as in the following theorem.

Theorem 4.8. Assume V has a unique minimizer x⋆ on X . Let (bt)t be the Sinkhorn potential flow of V
starting at some b0 ∈ B. Then,

bt −−−→
t→∞

bmin := B(δx⋆) (4.9)

in B and thus
µt −−−⇀

t→∞
∗ δx⋆ (4.10)

where −⇀∗ denotes weak-* convergence.

The above theorem is the direct consequence of Lemma 4.11 and Lemma 4.12 below. We first give the behavior
of the derivative of the flow as t→∞, easily deduced from Theorem 4.1.

Lemma 4.9. Let (bt)t be a Sinkhorn potential flow. Then its derivative ḃt converges to 0 in Hc as t→∞.

Proof. The statement is an immediate consequence of ḃ ∈ L2([0,+∞),Hc) and Theorem 4.1 (a). □

Next, we state the following closedness of P needed to take limits.

Lemma 4.10. The graph of P is closed in B × C(X ).

Proof. Consider a sequence bn → b in B and pn → p in C(X ) where pn ∈ Pbn for all n. It is evident
that p ≤ 0 by uniform (and thus pointwise) limit, and by Lemma A.3 the term H−1

c bn converges weakly-* to
H−1

c b inM(X ), which paired with a strongly convergent sequence yields 0 =
〈
H−1

c bn, pn
〉
→
〈
H−1

c b, p
〉
by [40,

Proposition 3.13 (iv)], whence p ∈ Pb. □

We can now show the two lemmas proving Theorem 4.8.

Lemma 4.11. Let (bt)t follow the Sinkhorn potential flow of V starting at b0 ∈ B. Then this curve has at
least one accumulation point and all of its accumulation points b are critical in the sense that

0 ∈Wb+Pb. (4.11)

Proof. B is (norm) compact thanks to Theorem 2.8 (b) which gives existence of a converging subsequence.
Taking such a sequence denoted as btn −−−→n→∞

b for (tn)n increasing and going to +∞, Lemma 4.9 ensures that

Wbtn + ptn −−−→
t→∞

0 in Hc (4.12)
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and since W is continuous from B to C(X ) (Proposition 3.11), we have Wbtn −−−→n→∞
Wb in C(X ) and thus ptn

converges to −Wb in C(X ). The graph of P is closed by Lemma 4.10, meaning −Wb ∈ Pb and therefore b is
a critical point. □

Lemma 4.12. Assume V has a unique minimizer x⋆. Then the only critical point in the sense of (4.11) is
bmin := B(δx⋆).

Proof. Thanks to the computation (3.25) we have −Wbmin = 2
ε (V (x⋆)− V ) bmin, which integrates to 0 against

δx⋆ and is nonpositive, i.e. −Wbmin ∈ Pbmin and bmin is critical. We now proceed by contraposition and take
b ̸= bmin to show it is not a critical point. Write µ = B−1

(
b
)
, and consider the curve

µt := (1− t)µ+ tδx⋆ (4.13)

and its associated curve (bt)t. The former is a vertical perturbation (of derivative µ̇ = δx⋆ − µ ∈M(X )) and
thus admissible in the sense that ḃ is well defined (as consequence of [30, Proposition 3.11 and Lemma B.2.]).
We first compute the derivative of the energy over time in the variable µt: using Remark 3.5 and differentiating
we have

d

dt
E(bt) = ⟨µ̇, V ⟩

= V (x⋆)− ⟨µ̄, V ⟩
< 0

(4.14)

since b ̸= bmin and thus µ ̸= δx⋆ . We can also express this derivative in the variable b as follows. Using the fact

that Hµt µ̇ = (I +Kµt)
[
atḃt

]
from Lemma 2.10 and Hµt µ̇ = atHc [atµ̇] we get

Hc [atµ̇] = ḃt +Hc

[
a2t ḃtµt

]
(4.15)

and thus

µ̇ = btH
−1
c ḃt + atḃtµt

= btH
−1
c ḃt + ḃtH

−1
c bt.

This yields

d

dt
E(bt) =

〈
btH

−1
c ḃt + ḃtH

−1
c bt, V

〉
=
〈
H−1

c ḃt, V bt

〉
+
〈
H−1

c bt, V ḃt

〉
=
〈
H−1

c ḃt, (V + V ∗)bt

〉
from Lemma 3.2, and combined with (4.14) we get〈

H−1
c ḃt, (V + V ∗)bt

〉
< 0. (4.16)

Now observe that for any t and any pt ∈ Pbt,
〈
H−1

c bt, pt
〉
= 0 and for any s,

〈
H−1

c bt+s, pt
〉
≤ 0. As a result,〈

H−1
c

[
bt+s − bt

s

]
, pt

〉
≤ 0.

We will now use the continuity of H−1
c from Lemma A.3 to take the limit s→ 0, which requires to check that

everything stays in Hc[M(X )]. Clearly for any s, bt+s−bt
s ∈ Hc[M(X )], and bt+s−bt

s converges in Hc to ḃt as
s→ 0, where from (4.15)

H−1
c ḃt = at

(
µ̇− atḃtµ

)
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which is an element ofM(X ) due to µ̇ ∈M(X ). We can thus pass to the limit and obtain
〈
H−1

c ḃt, pt

〉
≤ 0.

Using (4.16) we get 〈
H−1

c ḃt, (V + V ∗)bt + pt

〉
≤
〈
H−1

c ḃt, (V + V ∗)bt

〉
< 0, (4.17)

and since this holds for any pt ∈ Pbt, it follows that 0 /∈ (V +V ∗)bt+Pbt. Taking t = 0 then using Proposition
3.10 to compose by the inverse of the metric tensor G̃µ gives the result. □

Remark 4.13. We see from the proof that the main reason why we can obtain convergence to a global
minimizer even for non-convex potentials in the Sinkhorn case but not in the Wasserstein case is that vertical
perturbations are admissible for the former but not for the latter (all absolutely continuous curves for the
Wasserstein distance are ’horizontal perturbations’ verifying a continuity equation [7, Theorem 5.14]). Vertical
perturbations intuitively allow for a sort of ’tunneling’ effect making mass able to pass through potential
barriers.
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5 Proof of the convergence of the SJKO scheme in
the case of a finite space

We prove in this section the following theorem showing the validity of the limit as τ→ 0 that we have derived
informally Section 3.1, when the space X is made of n points.

Theorem 5.1. Let X = {x1, . . . , xn} be finite, and for τ > 0, define (µτk)k the sequence given by the SJKO

scheme (3.1) with initialization µ0 ∈ P(X ). Let bτk := B(µτk),
(
b
τ
t

)
t
its piecewise constant interpolation i.e.

b
τ
t = bτk for t ∈ [kτ, (k + 1)τ),

and (bτt )t its piecewise geodesic interpolation i.e. (bτt )t∈[kτ,(k+1)τ] is a constant-speed geodesic between bτk and
bτk+1 for the Riemannian metric dS (as given by Theorem 2.15). Then on [0, T ] for arbitrary T > 0, up to a

subsequence, b
τ
and bτ both converge uniformly as τ→ 0 to the Sinkhorn potential flow of V starting at B(µ0).

The reason why the general case is much more involved will be made apparent Remark 5.8.

In order to prove Theorem 5.1, we will at each step write the difference fµτ
k+1,µ

τ
k
−fµτ

k+1
appearing in (3.2) as the

integral of its derivative along a curve interpolating between µτk and µτk+1, which involves the derivative of the
Schrödinger potentials outside of the diagonal (in contrary to Proposition 2.5) and thus makes a generalization
of the operators Kµ and Hµ appear. We first define these operators and adapt some results of [30, Section 3].

5.1 The operators Hµ,ν and Kµ,ν

The following definitions and results hold in the general case where X need not be finite.

Definition 5.2. Define the kernel kµ,ν by

∀x, y ∈ X , kµ,ν(x, y) := exp
(
1
ε (fµ,ν(x) + fν,µ(y)− c(x, y))

)
.

We define the operators Hµ,ν and Kµ,ν by

Hµ,ν :M(X )→ C(X ), Hµ,ν [σ](x) := ⟨σ, kµ,ν(x, ·)⟩
Kµ,ν : C(X )→ C(X ), Kµ,νϕ := Hµ,ν [ϕν].

The notation is chosen with this convention because Hµ,ν is actually valued in the space Hµ,ν := exp
(
fµ,ν

ε

)
Hc.

As when µ = ν, the Schrödinger system (2.2) gives Kµ,ν1 = 1. We now state some results extending those of
[30, Section 3].

Proposition 5.3. Hµ,ν :M(X )→ C(X ) and Kµ,ν : C(X )→ C(X ) are compact.

Proof. [30, Proposition 3.6] proves the result when µ = ν, and the proof still works when µ ̸= ν. □

Proposition 5.4. Let q := 1− exp
(
−4∥c∥∞

ε

)
∈ (0, 1). Then:

(a) For any ϕ ∈ C(X ), ∥Kµ,νϕ∥C(X )/R ≤ q ∥ϕ∥C(X )/R.

(b) The operator I −Kµ,νKν,µ is invertible on C(X )/R and I +Kµ,ν is invertible on C(X ).

(c) For ϕ, ψ ∈ C(X ), ⟨ψ,Kµ,νϕ⟩L2
µ(X ) = ⟨Kν,µψ, ϕ⟩L2

ν(X ).
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Proof. Items (a) and (b) are proven the same way as [30, Proposition 3.7, Theorem 3.8], and (c) is an easy
consequence of the fact that kµ,ν(x, y) = kν,µ(y, x). □

Corollary 5.5. The eigenvalues of Kµ,νKν,µ on C(X ) belong to [0, q2], and that of (I −Kµ,νKν,µ)
−1 on

C(X )/R are contained in
[
1, 1

1−q2

]
.

Proof. The positivity of the eigenvalues of Kµ,νKν,µ is a consequence of Proposition 5.4 (c), and the bound
of q2 comes from Proposition 5.4 (a). The rest of the statement is easily deduced from the fact that λ ̸= 1 is
an eigenvalue of Kµ,νKν,µ if and only if 1

1−λ is an eigenvalue of (I −Kµ,νKν,µ)
−1. □

With these results, we can study the derivative of the Schrödinger potentials and generalize Proposition 2.5.

5.2 The derivative of a Schrödinger potential

Proposition 5.6. For (µt)t a curve valued in P(X ) and weakly differentiable inM(X ), denote ft,s := fµt,µs ,
Kt,s := Kµt,µs and Ht,s := Hµt,µs . It holds

∂ft,s
∂s

= −ε (Id−Kt,sKs,t)
−1Ht,sµ̇s. (5.1)

Proof. We will follow the same method as the proof of [30, Lemma 3.10]. The existence of derivatives is
obtained by applying the implicit function theorem [41, Theorem 10.2.1] to the function

T̃ : f, s 7→ f − Tε(Tε(f, µt), µs) (5.2)

where t is fixed. The optimal conditions given by the Schrödinger system (2.2) characterize ft,s as the unique
solution (in C(X )/R) of T̃ (f, s) = 0, and the mapping T̃ is continuously differentiable since it is the case of Tε,
which has partial derivatives computed as

D1Tε(f, µ)[g](x) = −
〈
µ, g exp

(
1
εf
)
kc(x, ·)

〉〈
µ, exp

(
1
εf
)
kc(x, ·)

〉 (5.3)

D2Tε(f, µ)[µ̇](x) = −ε
〈
µ̇, exp

(
1
εf
)
kc(x, ·)

〉〈
µ, exp

(
1
εf
)
kc(x, ·)

〉 . (5.4)

We can thus compute using the chain rule and fs,t = Tε(ft,s, µt) the partial derivative

D1T̃ (ft,s, s) = Id−D1Tε(fs,t, µs)D1Tε(ft,s, µt)

which is required to be invertible to apply the implicit function theorem. Using that Kµ,ν1 = 1 in (5.3) yields

D1Tε(fs,t, µs)[g](x) = −
〈
µs, g exp

(
1
ε (ft,s(x) + fs,t)

)
kc(x, ·)

〉〈
µs, exp

(
1
ε (ft,s(x) + fs,t)

)
kc(x, ·)

〉
= −(Kt,sg)(x)

and similarly
D1Tε(ft,s, µt)[g] = −Ks,tg. (5.5)

Thus we get
D1T̃ (ft,s, s) = Id−Kt,sKs,t (5.6)

which is invertible on C(X )/R by Proposition 5.4. The implicit function theorem applies, yielding the existence

of the partial derivative
∂ft,s
∂s and its expression given by

∂ft,s
∂s

= −
(
D1T̃ (ft,s, s)

)−1
(
∂T̃ (ft,s, s)

∂s

)
(5.7)
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with
∂T̃ (ft,s, s)

∂s
= −D2Tε(fs,t, µs) [µ̇s] (5.8)

and the right hand term is computed using that Kµ,ν1 = 1 in (5.4) as before, yielding

∂T̃ (ft,s, s)

∂s
= εHt,s [µ̇s] . (5.9)

Substituting (5.6) and (5.9) into (5.7) yields the desired expression (5.1). □

Notice that Proposition 5.6 only works when µ̇ ∈M(X ), which is part of the reason we must next consider a
finite space. We will further explain this difficulty in Remark 5.8.

5.3 Limit τ→ 0

We can now move to the proof of Theorem 5.1, where we identify M(X ) = C(X ) = Hc = Rn, operators on
these spaces are identified with n × n matrices, and we will omit the topology considered when dealing with
limits in those spaces since all weak and norm topologies become equivalent [40, Proposition 3.6].

We quickly recall the following estimate from [42] necessary to relate the Sinkhorn divergence and the norm
distance after the change of variables.

Lemma 5.7. Let µ, ν ∈ P(X ) and bµ := B(µ), bν := B (ν). Then it holds

∥bµ − bν∥2Hc
≤ 2

εSε (µ, ν) . (5.10)

Proof. We have
∥∥∥e fµ

ε µ− e
fν
ε ν
∥∥∥2
H∗

c

≤ 2
εSε (µ, ν) from [42, Proposition 16], and using the isometry Hc gives the

result. □

Proof of Theorem 5.1. Using the suboptimality of µτk in (3.1) gives

E(µτk+1) +
Sε(µ

τ
k, µ

τ
k+1)

2τ
≤ E(µτk)

and for any ℓ, we sum over k ≤ ℓ to get from the boundedness of E

ℓ∑
k=0

Sε(µ
τ
k, µ

τ
k+1)

2τ
≤ E(µτ0)− E(µτℓ+1) ≤ C

where C > 0 is a constant. We will abusively denote C various constants and not bother with their exact expres-
sions for simplicity. Since dS(b

τ
k+1, b

τ
k) ≤ C

∥∥bτk+1 − bτk
∥∥
Hc

from Theorem 2.15 and
∥∥bτk+1 − bτk

∥∥2
Hc
≤ 2

εSε(µ
τ
k, µ

τ
k+1)

by Lemma 5.7, we get
ℓ∑

k=0

dS(b
τ
k+1, b

τ
k)

2

2τ
≤ C. (5.11)

Additionally, for t ∈ [kτ, (k + 1)τ] and with µτt := B−1 (bτt ),

dS(b
τ
k+1, b

τ
k)

2

2τ
= τ

2

(
dS(b

τ
k+1, b

τ
k)

τ

)2

= τ
2 g̃µt

(
ḃτt , ḃ

τ
t

)
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since (bτt )t∈[kτ,(k+1)τ] is a constant speed geodesic. Thus

dS(b
τ
k+1, b

τ
k)

2

2τ
= 1

2

∫ (k+1)τ

kτ
g̃µt

(
ḃτt , ḃ

τ
t

)
dt

which combined with (5.11) gives ∫ T

0
g̃µt

(
ḃτt , ḃ

τ
t

)
dt ≤ C.

From the bound of Proposition 2.13, we deduce∫ T

0

∥∥∥ḃτt∥∥∥2Hc

dt ≤ 2
ε

∫ T

0
g̃µt

(
ḃτt , ḃ

τ
t

)
dt

≤ C.

Thus (bτ)τ is a bounded sequence in H 1([0, T ],Hc) and
(
ḃτ
)
τ
is bounded in L2([0, T ],Hc). Morrey’s inequality

(Lemma B.4) also gives

∥bτt − bτs∥Hc
≤ C |t− s|

1
2

and since b
τ
and bτ agree at kτ for any k, ∥∥∥bτt − bτt∥∥∥Hc

≤ Cτ
1
2 .

The Ascoli-Arzelà theorem applies, giving a uniformly converging subsequence of (bτ)τ to a limit b valued in
B, and bτ converges to the same limit due to the previous estimate. Banach-Alaoglu gives a subsequence of ḃτ

converging weakly in L2([0, T ],Hc), to a limit curve ḃ which is the derivative of b by distributional convergence.
We now aim to show that the limit follows the expected equation. Recall the optimality conditions

1
2τ

(
fµτ

k+1,µ
τ
k
− fµτ

k+1

)
+ V + pτk+1 = 0 (5.12)

for some pτk+1 ∈ Pbτk+1. Writing fτt,s := fµτ
t ,µ

τ
s
, we write the difference of Schrödinger potentials as the integral

of its derivative i.e.

1
2τ

(
fτ(k+1)τ,kτ − f

τ
(k+1)τ,(k+1)τ

)
= − 1

2τ

∫ (k+1)τ

kτ

∂fτ(k+1)τ,s

∂s
ds.

Since there is no ambiguity between the functional spaces at hand, Proposition 5.6 applies which combined with

Hsµ̇
τ
s = (Id +Ks)

[
aτsḃ

τ
s

]
(Lemma 2.10) yields

−1
2

∂fτ(k+1)τ,s

∂s
= J(k+1)τ,sḃ

τ
s (5.13)

where
Jτ
t,s :=

ε
2 (Id−Kt,sKs,t)

†Ht,sH
−1
s (I +Ks)diag (a

τ
s) (5.14)

with aτs := (bτs)
−1, diag (aτs) the corresponding diagonal matrix, and M † denoting the Moore-Penrose pseudoin-

verse of a matrix M ∈ Rn×n (which appears due to the fact that Id −Kt,sKs,t is only invertible in C(X )/R).
Every matrix involved in the above expression is continuous with respect to t, s since µτ is continuous and
the potentials vary continuously with respect to the measures [21, Proposition 13 (Appendix B)]. With the
continuity of the inverse, and that of the pseudoinverse for bounded sequences [43, Proposition 2.3] (the bound
coming from Corollary 5.5), we have that the curve defined by

Ĵτ
t := Jτ

(⌊ t
τ⌋+1)τ,t
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converges pointwise as τ→ 0 to Jt, where

Jt :=
ε
2

(
Id−K2

t

)†
(Id +Kt)diag (at)

with at := (bt)
−1. Notice that as seen in (3.7),

Jtḃt = Gµt µ̇t (5.15)

where (µt)t := (B−1(bt))t. Denoting the piecewise interpolation

gτt := 1
2τ

(
fτ(k+1)τ,kτ − f

τ
(k+1)τ,(k+1)τ

)
for t ∈ [kτ, (k + 1)τ)

= 1
τ

∫ (k+1)τ

kτ
Ĵτ
s ḃ

τ
sds,

we now show that gτ converges weakly in L2([0, T ],Rn) to
(
Jtḃt

)
t
. Take a curve (ϕt)t ∈ C([0, T ],Rn) and

compute ∫ T

0
⟨ϕt, gτt ⟩ dt =

K∑
k=0

∫ (k+1)τ

kτ

〈
ϕt,

1
τ

∫ (k+1)τ

kτ
Ĵτ
s ḃ

τ
sds

〉
dt

=
K∑
k=0

1
τ

∫ (k+1)τ

kτ

∫ (k+1)τ

kτ

〈
ϕt, Ĵ

τ
s ḃ

τ
s

〉
dtds

=

∫ T

0

〈
hτs, ḃ

τ
s

〉
ds

where

hτs =
1
τ

(
Ĵτ
s

)∗ ∫ (k+1)τ

kτ
ϕtdt for s ∈ [kτ, (k + 1)τ)

and M∗ is the transpose of a matrix M . The sequence (hτ)τ is uniformly bounded and converges pointwise to
t 7→ J∗

t ϕt using the convergence of t 7→ Ĵτ
t and the fundamental theorem of calculus. The Lebesgue dominated

convergence theorem gives strong convergence of the sequence in L2([0, T ],Rn) and thus the duality pairing with
ḃτ converges from [40, Proposition 3.5 (iv)]. We have convergence of ⟨ϕ, gτ⟩L2([0,T ],Rn) to ⟨ϕ,Gµµ̇⟩L2([0,T ],Rn)

for all continuous curves ϕ, and using the density of such curves in L2([0, T ],Rn) with the boundedness of the
sequence, [44, Lemma 4.8-7] gives the weak limit. Writing

pτt := pτk+1 for t ∈ [kτ, (k + 1)τ)

i.e. pτt = −V −gτt , we have easily the convergence of the curves pτ to p = (−V −Gµt µ̇t)t weakly in L2([0, T ],Rn).
Thus, showing that pt ≤ 0 and ⟨µt, pt⟩ = 0 for a.e. t will give the desired result. Since pτt ≤ 0, we obtain for
any curve λ valued in R+ and for any x ∈ X that

0 ≥
∫
λtp

τ
t (x)dt =

∫
⟨λtδx, pτt ⟩ dt

→
∫
⟨λtδx, pt⟩ dt

giving pt ≤ 0 for a.e. t. We have from the continuity of B−1 given by Theorem 2.8 (b) that µτ converges to
µ pointwise, and therefore the dominated convergence theorem yields that the convergence is also strong in
L2([0, T ],Rn). As a result, since ∀t, ⟨µτt , pτt ⟩ = 0 then∫

λt ⟨µτt , pτt ⟩ dt = 0

→
∫
λt ⟨µt, pt⟩
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which combined with pt ≤ 0 gives ⟨µt, pt⟩ = 0 for a.e. t. □

Remark 5.8 (Obstructions and hopes in the general case). When moving from a finite to a continuous
space, the difficulty comes from the lack of homogeneity between the tangent spaces. Indeed, we have proven
Proposition 5.6 when the derivative (µ̇t)t is always valued inM(X ) which is the case when all spaces are simply
Rn. However, generally speaking, we would have µ̇t ∈ H∗

µt,0 when building the curve (µt)t from the geodesic
interpolation as we have done, and the operator Hµ,ν from Definition 5.2 is at most extended to H∗

ν,µ which
will not usually contain H∗

µ. The expression on the right hand side of (5.1) is thus ill defined for the more
general class of curves. Still, the expected limit is known to be well defined from Theorem 4.1, and moreover
it is retrieved as the limit n→∞ of the discretized space case. The limit results that we have are summarized
by the diagram Figure 5.1 below.

SJKO scheme on {x1, . . . , xn} Sinkhorn potential flow on {x1, . . . , xn}

Sinkhorn potential flow on X

τ→ 0

Theorem 5.1

n→∞ Theorem 4.1

Figure 5.1: Summary of limit results

As a result, one could hope to show the diagram commutes under appropriate regularity assumptions to show
the desired limit τ→ 0 in the general case.
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6 Numerics

In this section, we illustrate numerically the theory developed in the previous sections. The full code, parameters
used and animations are available online 1 (some code was adapted from the Geomloss package [21], and we use
the library PyTorch [45] for its automatic differentiation capabilities and GPU compatibility). We first detail
the algorithm that was used before moving to the results.

6.1 Numerical scheme

We focus on how to compute a single SJKO step starting from µ ∈ P(X ), i.e. minimize the objective

ν 7→ 2τ ⟨ν, V ⟩+ Sε(ν, µ) (6.1)

over ν ∈ P(X ) (which has the same minimizer as the original objective in (3.1) but avoids the numerical
instabilities of dividing by τ). To compute OTε appearing in the Sinkhorn divergence, the basic method is
the Sinkhorn algorithm given by iterating alternatively the two conditions in the Schrödinger system (2.2),
which converges to the solution of (2.1) [16, Theorem 4.2]. For the self transport of a measure, a more simple
fixed-point algorithm can be utilized [21, Section 3.1]. The fact that τ will be small will make the convergence
at each step faster since the values of the Schrödinger potentials at the previous step will already be close to
optimal and thus make a good initialization. The gradients of the Sinkhorn divergence are easily deduced from
the dual potentials computed by these algorithms [21, Section 3.2], which will allow us to perform each SJKO
step through a first order method such as gradient descent. When considering an Eulerian discretization (i.e.
fixing positions {x1, . . . , xn} and representing a measure by its weights at each of these points), the objective
(6.1) is convex in the weights (thanks to Theorem 1.3) with Lipschitz gradient [46], guaranteeing convergence
of such methods to the optimum if the gradients are computed accurately enough. The drawback is the need
to enforce the positivity and sum constraints on the weights, which slows down convergence. When considering
a Lagrangian discretization (i.e. the weights are fixed to 1

n and the positions {x1, . . . , xn} are variable), the
convexity is lost but the need to enforce constraints disappears. We summarize in Pseudocode 1 below the
resulting algorithm.

Input: measure µ, potential V
Initialize ν ← µ
Repeat until convergence (see (6.2)):

1. Compute fµ,ν and fν using Sinkhorn’s algorithm [21, Section 3.1]
2. If the discretization is Eulerian:

(a) Compute the gradient of (6.1) as 2τV + fµ,ν − fν
(b) Perform a gradient descent step and project it onto the probability simplex using [47] to update ν

3. If the discretization is Lagrangian:
(a) Compute the gradients of (6.1) with respect to the positions using automatic differentiation [21,

Section 3.2]
(b) Perform a gradient step to update ν

Output: ν approximating the minimizer of (6.1)

Pseudocode 1: Algorithm to compute a single JKO step

The convergence criterion that we used is based on the optimality conditions (3.2), which we wrote before
in C(X)/R but the missing constant can be computed: denoting g(ν) := 2τV + fµ,ν − fν for simplicity, the

1https://github.com/mhardion/sjko_numerics
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conditions for ν to optimize (6.1) on P(X ) write

∃p ∈ C(X ),∃λ ∈ R,


g(ν) + p+ λ = 0
p ≤ 0
⟨ν, p⟩ = 0
ν ∈M+(X )
⟨ν, 1⟩ = 1

where by integrating the first line against ν we get λ = −⟨ν, g(ν)⟩ and thus rewriting p = ⟨ν, g(ν)⟩−g(ν) (which
immediately implies ⟨ν, p⟩ = 0) we obtain the conditions{

g(ν)− ⟨ν, g(ν)⟩ ≥ 0

ν ∈ P(X ).

(6.2)

(6.3)

The constraint (6.3) is enforced throughout the algorithm (by projection in Eulerian discretization, and by
fixing the weights in Lagrangian discretization), so (6.2) can become our convergence criterion: we stop when
the inequality is valid up to a small tolerance. This inequality is only checked on the positions {x1, . . . , xn}
since those values are directly given by the algorithm. This is not a problem in the Eulerian case where those
points describe the whole considered space, but it can lead to suboptimality in the Lagrangian case where the
possible locations are still within a continuous space.

The next sections show the results of the simulations, in which c will be chosen as the square Euclidean distance.

6.2 The three-point space: embedding and rotational motion

When the space is made of three points (x1, x2, x3), it is possible to visualize the RKHS sphere and the embedding
of the flow on it (since the Schrödinger potentials are computed at each step), to illustrate the correspondence
of the limiting PDE with constrained rotational motion (Remark 3.13). We do so via the change of basis given

by H
− 1

2
c which makes Hc correspond to Euclidean space. We can then easily compute the axis of rotation of

the unconstrained motion ḃ+Wb to compare theory and numerics. The result is shown Figure 6.1, where we
observe the rotation and the constraints as expected.

V

x1 x2 x3

Figure 6.1: SJKO flow after embedding on the RKHS sphere (left), for the potential and three point space on
the right. The boundary of the admissible set B is indicated with the dashed orange line. The initial point
(t = 0) of the trajectory (red) is at the center and the endpoint (t = 5) is the circular marker. The heatmap on
the sphere illustrates the quadratic form E : b 7→ ⟨b, V b⟩Hc

that the flow minimizes. The black lines indicate
the rotation given by the theory. They are followed quite closely by the flow, and we can see the tendency of
the latter to minimize the energy.
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6.3 Flow of a single Dirac mass: SJKO versus classical gradient flow

We next illustrate the behavior of the flow of a single Dirac mass studied in Section 3.3, to observe its cor-
respondence with the classical gradient flow when the potential is convex. We take a quadratic potential and
compute the flow to compare it with the theoretical evolution. The flow is illustrated Figure 6.2 and the dis-
tance to the expected motion is given Figure 6.3. The latter stays low enough to be attributed to the numerical
approximation at each step and decreases with τ, which stays consistent with Proposition 3.14.

Figure 6.2: Flow of a single Dirac mass for V = ∥·∥2. Here τ = 10−3 but the markers correspond to intervals
of width 5× 10−2 to better visualize the evolution of the velocity.

τ = 10−3 τ = 10−4

Figure 6.3: Distance between the SJKO gradient flow for a quadratic potential and the theoretical evolution
given by the classical gradient flow (xt = e−2tx0), with different values of τ. The distance stays of magnitude
smaller than τ which tends to corroborate the expected result.
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6.4 Convex and non convex potentials

We now show experiments on convex and non-convex potentials, in order to observe both horizontal and vertical
perturbations. The latter can only happen in an Eulerian discretization since they can only be continuous by
progressively modifying weights, but those are fixed in the Lagrangian case. This shows a tradeoff in the choice
of discretization: Eulerian allows vertical perturbations but the optimization procedure is slower, and vice-
versa for Lagrangian. In Figure 6.4 we show the evolution for a quadratic potential and relatively small ε in the
Eulerian case. Figure 6.5 shows in Lagrangian discretization (most suited to the Wasserstein case) the difference
between Sinkhorn and Wasserstein on the same potential. Figure 6.6 illustrates in Eulerian discretization the
case of a non convex potential, showing that for large enough ε we observe vertical perturbations which allow
convergence towards the minimum despite potential barriers (as proven Theorem 4.8). In contrast Figure 6.7
shows that a Lagrangian discretization does not allow this behavior.

t = 0.0 t = 0.2 t = 0.4 V

Figure 6.4: Eulerian flow for a quadratic potential (right). Darker red values indicate more mass. The regular-
ization parameter is chosen as ε = 0.2 on a domain X = [0, 1]2 to be rather close to the Wasserstein case. We
indeed observe a behavior closer to a continuity equation, where mass moves horizontally rather than vertically.

ε
=

0
ε
=

0.
2

t = 0.0 t = 0.4 t = 0.8 t = 1.2 t = 1.6

Figure 6.5: Lagrangian flow in with the same parameters as Figure 6.4, Wasserstein (top) against Sε, ε = 0.2
(bottom). The positions of the masses are the red dots, and the blue heatmap illustrates the potential V . We
observe in the Sinkhorn case interaction between the particles, which tend to aggregate together before moving
towards the minimum, as opposed to the Wasserstein case where each particle follows the classical gradient flow
independently.
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t = 0.00 t = 0.25 t = 0.50 V

Figure 6.6: Eulerian flow for a non convex potential (shown right). Here ε = 5 which is large with respect to the
diameter of X = [0, 1]2 to get close to the MMD behavior of the Sinkhorn divergence, and we observe a vertical
displacement of the mass rather than horizontal, which transfers the mass towards the minimum despite the
potential barrier.

t = 0.00 t = 0.05 t = 0.10 t = 0.15 t = 0.20

Figure 6.7: Lagrangian flow for the same potential and value of ε as Figure 6.6. We observe that the particles
get stuck in a local minimum, since vertical perturbations are not allowed by the discretization scheme as
mentioned above.

35



7 Conclusion and outlook

In this thesis, we have derived the differential equation corresponding to the gradient flow of a potential energy in
the geometry induced by the Sinkhorn divergence, and studied its main properties including existence, unique-
ness, contractivity and convergence in time to the minimum of the energy for possibly nonconvex potentials.
Simple numerical observations illustrate the rotational structure of the motion, the presence of vertical per-
turbations allowing the long time convergence and interaction between particles as opposed to the Wasserstein
case. A few directions of further research arise quite naturally, which we now discuss.

First, the recovery of the expected equation as the time step vanishes in the SJKO scheme was only proven in
the case of a finite space, and future work could hope to prove a more general result as mentioned in Remark
5.8.

Next, the asymptotic behavior studied Section 4.2 was purely qualitative, but perhaps deriving estimates on
the dissipation (by looking to generalize Proposition 4.5 to continuous spaces) and using a Grönwall lemma or
the like could yield more quantitative information with regards to convergence speed.

Finally, now that we have a good basis to understand the case of a potential energy, one could imagine adding an
entropic term to the energy and derive the flow of the resulting free energy in the Sinkhorn geometry, to study
the difference with the Fokker-Planck equation recovered in the Wasserstein geometry. The analysis would be
more involved, as nonlinearity would arise from the entropic term and the same change of variables used in our
work may not yield an equation as interpretable as the one we obtained in the potential energy case.
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Appendix

A. Short lemmas about Reproducing Kernel Hilbert Spaces

Lemma A.1. Let (Hk, ⟨·, ·⟩Hk
) be the RKHS for a continuous PD kernel k on X and ∥·∥Hk

the corresponding
norm. Then for any h ∈ Hk ⊂ C(X ),

∥h∥∞ ≤ sup
x∈X

k(x, x) ∥h∥Hk
. (A.1)

Proof. For x ∈ X , using the reproducing kernel property and Cauchy Schwarz yields

h(x) = ⟨k(x, ·), h⟩Hk

≤ ∥k(x, ·)∥Hk
∥h∥Hk

= k(x, x) ∥h∥Hk

whence the result. □

Lemma A.2. With the notations of Lemma A.1, the mapping x 7→ k(x, ·) from X to Hc (with its norm
topology) is continuous.

Proof. Taking xn → x in X , we have

∥k(xn, ·)− k(x, ·)∥2Hk
= ∥k(xn, ·)∥2Hk

+ ∥k(xn, ·)∥2Hk
− 2 ⟨k(xn, ·), k(x, ·)⟩Hk

= k(xn, xn) + k(x, x)− 2k(xn, x)

which converges to 0 from the continuity of k. □

Lemma A.3. With the notations of Lemma A.1, define the Riesz isometry

H−1
k :

∣∣∣∣ Hk −→ H∗
k

h 7−→ ⟨h, ·⟩Hk

. (A.2)

If the kernel k is universal, then the operator H−1
k : Hk [M(X )]→M(X ) is norm-to-weak-* continuous.

Proof. The Riesz-Fréchet theorem [40, Theorem 5.5] gives that H−1
k : Hk → H∗

k is an isometry and thus
norm-to-norm continuous. Since k is universal, convergence in H∗

k implies weak-* convergence of measures
when restricting toM(X ) (proven on P(X ) in [48, Theorem 23], the proof still works inM(X )). This yields
the result. □

B. Morrey’s inequality in the Sobolev space of Hilbert space

valued curves

Lemma B.4. Let H be a Hilbert space. For any (ht)t ∈H 1([0, T ];H), it holds that

∀t, s ∈ [0, T ], ∥ht − hs∥H ≤
∥∥∥ḣ∥∥∥

L2([0,T ];Hc)
|t− s|

1
2 . (A.3)
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Proof. Using the fact that curves in H 1([0, T ];H) can be written as the integral of their derivative [30,
Theorem C.2] and Cauchy-Schwarz (in L2([0, T ];R)), we can write for all t, s ∈ [0, T ]

∥ht − hs∥H ≤
∫ T

0

∥∥∥ḣt∥∥∥
H
dt

≤
∥∥∥ḣ∥∥∥

L2([0,T ];H)
|t− s|

1
2

i.e. (A.3). □
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2015, pp. XXVII, 353. doi: 10.1007/978-3-319-20828-2.

[8] J. Pedlosky. Geophysical Fluid Dynamics. 2nd ed. Springer Book Archive. New York, NY: Springer-Verlag
New York Inc., 1987, pp. XIV, 710. doi: 10.1007/978-1-4612-4650-3.

[9] E. M. Purcell and D. J. Morin. Electricity and magnetism. 3rd. Cambridge University Press, 2013, p. 4.
[10] D. W. Stroock and S. R. S. Varadhan. Multidimensional Diffusion Processes. 1st ed. Classics in Mathe-

matics. Berlin, Heidelberg: Springer Berlin, Heidelberg, 2006, pp. XII, 338. doi: 10.1007/3-540-28999-2.
[11] F. Otto. “The geometry of dissipative evolution equations: the porous medium equation”. In: Communi-

cations in Partial Differential Equations 26.1-2 (2001), pp. 101–174. doi: 10.1081/PDE-100002243.
[12] A. Blanchet, V. Calvez, and J. A. Carrillo. “Convergence of the Mass-Transport Steepest Descent Scheme

for the Subcritical Patlak–Keller–Segel Model”. In: SIAM Journal on Numerical Analysis 46.2 (2008),
pp. 691–721. doi: 10.1137/070683337.

[13] B. Maury, A. Roudneff-Chupin, and F. Santambrogio. “A macroscopic crowd motion model of gradient
flow type”. In: M3AS 20.10 (2010), pp. 1787–1821. url: http://cvgmt.sns.it/paper/269/.

[14] C. Bunne, L. Papaxanthos, A. Krause, and M. Cuturi. “Proximal Optimal Transport Modeling of Pop-
ulation Dynamics”. In: Proceedings of The 25th International Conference on Artificial Intelligence and
Statistics. Vol. 151. Proceedings of Machine Learning Research. PMLR, Mar. 2022, pp. 6511–6528. url:
https://proceedings.mlr.press/v151/bunne22a.html.

[15] A. T. Lin, W. Li, S. Osher, and G. Montufar. Wasserstein Proximal of GANs. 2021. url: https://
arxiv.org/abs/2102.06862.
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