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Abstract

Comparing probability distributions is of increasing relevance in many fields of statistics
and machine learning, e.g. hypothesis testing and generative modeling. Finding compu-
tationally cheap, meaningful distances on the space of probability measures is therefore
crucial to current tasks which often involve large, high dimensional datasets. Algorithms
derived from such distances, for instance gradient flows, also need some convergence
guarantees to be usable in practice and provide stable behaviors. The paper studied in
this report introduces a class of probability metrics, named General Sliced Probabilty
Metrics (GSPMs), shown to be proper distances. By studying a particular case, a link
with Maximum Mean Discrepancy metrics is highlighted, and a corresponding gradient
flow scheme is derived. The latter is shown under some regularity conditions to converge
to the global optimum. This report studies the behavior of such metrics and correspond-
ing flows on various synthetic examples to pinpoint its strengths and weaknesses, and a
practical refinement of the gradient flow scheme is proposed.

I. Introduction

This report discusses the main contributions of [1], their implications, limitations and
possible extensions. That paper aims to introduce a novel way to compute dissimilar-
ity between probability distributions, i.e. introduce a family of metrics on the space of
probability measures. The study and development of such distances is of high interest
in machine learning and satistics, as it often deals with approximating the underlying
distribution of data with a model, and optimize its parameters to get as ”close” as
possible to the target probability law, where the notion of ”closeness” must be made ob-
jective adaptively to the problem as different applications may require different measures
of distance. Examples include two-sample testing [2], generative modeling [3], [4], [5],
clustering [6] etc. The computation of such metrics can be computationally demanding
however, and considering the high dimensionality and large sample sizes of current tasks,
it is crucial to consider cheaper yet still meaningful distances. In order to achieve this,
[1] build upon previous frameworks which we now sketch.

I.1 Radon Transform

Denote P(X ) for a measurable space X the set of probability measures on X , and Cb(X )
the set of real-valued continuous bounded functions on X . The ”slice” of µ ∈ P(X ) with
respect to f ∈ Cb(X ) is the pushforward f♯µ, corresponding to integrating µ along the
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level sets of f , intuitively akin to slicing the space to observe a 1-dimensional distribution
resulting from the ”contraction” of µ along that slice. It is then of interest to find classes
of functions F ⊂ Cb(X ) such that the knowledge of the slices f♯µ along all functions
f ∈ F is sufficient to characterize µ, i.e. the map

RF : µ 7→ {f♯µ, f ∈ F} (1)

is invertible. For the classical Radon transform, X =
(
Rd, ⟨·, ·⟩

)
and one considers a

class of linear functions F =
{
x 7→ ⟨θ, x⟩ , θ ∈ Sd−1

}
where Sd−1 :=

{
θ ∈ Rd, ∥θ∥2 = 1

}
is the unit sphere. Such a Radon Transform is then invertible, see e.g. [7]. Since
this transform corresponds to integration on hyperplanes, one can generalize it to hy-
persurfaces i.e. (d − 1)-manifolds, resulting in the so-called Generalized Radon Trans-
form (GRT). The classes of considered functiond are traditionally parametric, i.e. F =
{fθ ∈ Cb(X ), θ ∈ Ω} for some Ω ⊂ Rn \ {0}. Some necessary regularity conditions on
such functions are shown in [8], and some well-known examples of functions classes guar-
anteeing invertibility include circular slices fθ : x 7→ ∥x− sθ∥2 for some s > 0 and θ
varying in Sd−1 [9], and polynomials of odd degree homogenous in θ ∈ Sp−1 where p is
the degree of said polynomials [10].

The knowledge of family of slices for which one can recover the original measure is of
interest since it allows the definition of sliced distances. In the case of optimal transport,
Wasserstein distances between 1-dimensional distributions are far easier to compute than
in higher dimensions as they have an closed form. Thus, the idea of slicing probability
measures to reduce complexity of barycenter computation is introduced in [4], under the
classic Radon Transform framework. The resulting distance, coined Sliced Wasserstein
Distance, has found successful extensions in generative imaging [11], [12], and was then
generalized to the GRT case in [13], leading to the studied paper [1] aiming to explore
the slicing of other distances on the space of probability measures.

I.2 Gradient Flows

Once a way to compare probability measures is provided, a problem of interest is then
to minimize such a distance between a generated distribution and a target. To this end,
gradient flows [14] have gained some attention, for instance in generative modeling [15],
[16]. This method amounts to performing gradient descent in the space of probability
distributions, often using particle systems and the Euler-Maruyama scheme [17]. Con-
vergence towards minima of a distance can allow one to obtain a distribution ”close” to
the target yet distinct, hence its usefulness in generative purposes. Local minima could
be sufficient in some cases, but it is difficult to explicit which ones, meaning that con-
vergence towards a global minimum is a desirable property in general. Hence, though a
particular case of interest, the paper builds upon previously introduced results for MMD
distances [16] to derive a noisy gradient flow with respect to their newly introduced
metrics which converges towards the target distribution.

II. Contributions

II.1 Generalized Sliced Probability Metrics (GSPMs)

The main objects introduced in the paper are the GSPMs, which we define as follows.

Definition 1. Let ξ be a distance on the space of probability measures on R, and F =
{fθ ∈ Cb(X ), θ ∈ Ω} ⊂ Cb(X ) a class of functions for which the GRT is invertible. Then

2



the (r-)GSPM corresponding to ξ and F is defined for probability measures µ, ν ∈ P(Rd)
as

ζF (µ, ν) =

(∫
Ω
ξ (fθ♯µ, fθ♯ν)

r dθ

) 1
r

. (2)

Note that this is a slight reinterpretation of the original definition, as it was originally
considered in the case of measures with density, but the definition is also valid in the
general setting. It is easily shown that such a definition induces a proper distance [1].
Through studying a special case of GSPM, the authors highlight a link with Maximum
Mean Discrepancy (MMD) norms introduced in [2], summarized in the following prop-
erty.

Proposition 1. Let A be positive definite linear operator on L2(R,Leb) endowed with
its usual norm ∥·∥2, and consider the distance over the space of probability measures
on R with density w.r.t. Lebesgue defined by ξ(p, q) := ∥A(p− q)∥2 for two probabilty

density functions p and q. Given observations (xi)
N
i=1

i.i.d.∼ µ and (yj)
M
j=1

i.i.d.∼ ν, define

the smoothened empirical sliced densities of µ as p̂θ = 1
N

∑N
i=1 ϕσ(· − fθ(xi)) where ϕσ

is a radial basis function of radius σ i.e. smooth, L2 converging to the dirac distribution
as σ → 0; and define analogously q̂θ for ν, inducing measures on the whole space p̂,
q̂ having corresponding slices. Then, the corresponding GSPM ζ(p̂, q̂) is the empirical
MMD associated to the PD kernel

k : (x, y) 7→
∫
Ω
⟨Aϕσ(· − fθ(y)), Aϕσ(· − fθ(x))⟩ dθ, (3)

where the scalar product is taken in L2.

The defined kernel is in practice approximated using a Monte-Carlo estimator as the

integral is often intractable. We thus sample uniformly on Ω i.e. take (θℓ)
L
ℓ=1

i.i.d∼ U(Ω).

II.1.1 Behavior of GSPM-MMDs

We aim to better understand the way GSPM-MMDs behave on some synthetic examples.
We consider the We remind figure 1 the behavior of the Wasserstein distance between
Gaussians as reference, and show figure 2 the correponding visualizations in the case of
GSPM-MMD distances using different parameters. One observes that the latter plateaus
quite quickly, and approaches the dirac distance as σ goes to 0. The fact that the
empirical distance between two identical gaussians is nonzero simply comes from the
stochasticity of the estimator, with the added effect of a decreasing σ resulting in higher
distances as the set on which ϕσ is nonnegligible decreases. We explain the plateau with
the following result.

Proposition 2. Let ξ be the L2 distance between densities (i.e. A = id in the above),
F = {fθ ∈ Cb(R

n), θ ∈ Ω} for some Ω ⊂ Rn \ {0} and ζ the corresponding GSPM(-
MMD). Let µ, ν be two probability measures with densities, and assume these densities
to be bounded above by respective constants Bµ, Bν . Then, denoting Leb the Lebesgue
measure, one has

ζ2(µ, ν) ≤ Leb (Ω)
(
B2

µ +B2
ν

)
. (4)

The above proposition is straightforwardly proven using the triangular inequality. One
can also observe figure 3 that the rate at which the distance plateaus is related to the
thickness of the distributions’ tail i.e. the rate at which the pdfs go to 0 at infinity,
illustrated using Cauchy distributions.
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Figure 1: Wasserstein distance between gaussians (L = 50, N = 200, M = 200)
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Figure 2: GSPM-MMD distance between gaussians for different slices and radii (L = 50,
N = 200, M = 200, A = id)
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Figure 3: GSPM-MMD distance between Cauchy distributions for different slices and
radii (L = 50, N = 200, M = 200, A = id)

II.2 GSPM-MMD gradient flows

We now consider the gradient flows of GSPM-MMDs using the noisy Euler-Maruyama
scheme explored in [1] following the work in [16]. For a target distribution µ, the goal is
essentially to minimize ν 7→ ζF (ν, µ) via gradient descent. The scheme writes as follows
at iteration n:

Xn+1 = Xn + ηv(Xn + βnUn, νn) (5)

Where Xn denotes a particle of law νn, η is a step size, (Uk)k are i.i.d. standard normals,
βn is the noise standard deviation, and the vector field v is given by

∀x ∈ Rd,∀ν ∈ P(Rd), v(x, ν) = −∇x

(∫
k(·, x)dµ−

∫
k(·, x)dν

)
(6)

for the considered GSPM kernel defined in (3). The authors then show the following
convergence result which we next discuss.
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Theorem 1. Assume ν0 to have finite second order moment, A to be a linear bounded
positive semi-definite operator, the gradients ∇fθ to be bounded uniformly with respect
to θ and Lipschitz for a constant independant of θ, and ϕσ to be bounded Lipschitz
of bounded Lipschitz derivative. Further assume that

∑∞
i=0 β

2
i = ∞. Then, with the

notations from (5), there exists constants L and λ verifying

ζ(νn, µ) ≤ ζ(νn, µ)e
−2λ2η(1−3ηL)

∑n
i=0 β

2
i . (7)

We refer to [1] following [16] for the proof and expression of constants L and λ, though
the latter involve the operator norm of A and the Lipschitz constants and are thus
intractable in practical cases. Considering the established bounds only goes to 0 if η ≤
1
3L , this suggests the choice of ”sufficiently small η” but essentially gives no information
on when that is verified. It does give a guideline for the choice of the (βn), however it
is not used by the authors in their numerical experiments as they choose βn = β0

n+1 so
that the distribution stabilizes quicker. We now illustrate the behavior of GSPM-MMD
flows on our own synthetic distributions.

v is approximated using monte carlo estimation as before, requiring M samples of the
target distribution and N evolving particles of law νn at each iteration, over niter itera-
tions. The gaussian RBF is used, of standard deviation σ/2 so that the kernel involves
a gaussian pdf of standard deviation σ, and the case A = id is considered for simplicity.
Figure 4 illustrates flow between gaussians for linear and circular slices, with little no-
table difference between the two. In both cases, only a few particles actually make it to
the target gaussian, which is due to the very thin tail of gaussian distributions resulting
in a very flat landscape when far from the mode as previously discussed. Figure 5 illus-
trates the influence of the radius of the RBF on the flow for another pair of distributions,
where we see that a higher σ results in smoother, initially faster trajectories but they
are slower to explore the target distribution once it is reached, whereas a lower σ results
in noisier paths but better exploring the target distribution. This is logical from the be-
havior seen figure 2, as a smaller sigma means a flatter landscape, meaning the gradients
are smaller comparatively to the variance of the considered Monte Carlo estimators and
thus the direction at each step is more erratic. We then study figure 6 a multimodal
setting to observe whether the flow may get stuck in local minima, by looking at the flow
from one gaussian to a gaussian mixture containing the initial gaussian. As one might
expect, the flow indeed tends to get stuck in the potential well of the first gaussian, even
with larger noise schemes. Larger values of σ slow down the convergence, which makes
exploring other modes difficult. We now turn to a suggestion of solution to this issue.
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Figure 4: GSPM-MMD flow between two Gaussians with unit covariance, µ1 =
(−5,−5)T , µ2 = (5, 5)T , N = 50, M = 50, L = 20, niter = 2000, η = 0.5, βn = 0.1

(n+1)2
, σ =

0.1, linear slices (top), circular slices (bottom)
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Figure 5: GSPM-MMD gradient flows from a N (0, 0.01I2) to the uniform law over a ring
of inner radius 10 and thickness 2, for RBF of radii σ = 1 (top) and 0.1 (bottom),niter =
5000, N = M = 50, L = 20, η = .5, βn = 1

(n+1)2
, linear slices
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Figure 6: GSPM-MMD gradient flows in a multimodal setting, from N (0, I2) to
1
2

(
N (0, I2) +N ((0, 5)T , I2)

)
, βn = 1

n+1 (top) vs. 1√
n+1

(bottom, niter = 5000,

N = M = 50, L = 20, η = .5, linear slices

II.3 Extension of GSPM-MMD flow

With the behavior we have seen above in mind, it may be beneficial to change the value
σ of the RBF’s radius over iterations, so that it can initially benefit from larger gradients
and gradually reduce them so that it explores the target distribution once close, staying
above a minimal value σmin so that the distance stays relevant. This is illustrated figure
7 and 8, on the distributions we have seen before. We qualitatively observe what was
anticipated in that the trajectories are initially smoother and more explorative towards
the end, and allow for seemingly better convergence than previously illustrated schemes.
One also manages to explore different modes in the previous mixture case, as seen figure
9. The disadvantage is that this method requires extra parameter tuning, as the choice
of the rate of decrease of σn may be a complex task in practical settings. From a
theoretical standpoint, it is also complex to provide bounds for this scheme since the
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considered kernel varies over iterations, although an extension of theorem 1 may be
possible through a derivation akin to the one in [16] by carefully bounding distances at
each iteration with respect to the distance of σmin, as distances appear to become larger
as σ decreases. Verification of such properties is beyond the scope of this report.

Figure 7: Changing radius GSPM-MMD flows with σn = 1− 0.9 n
niter

(top) and 0.1
n

niter

(bottom), same other parameters as figure 5

11



Figure 8: Changing radius GSPM-MMD flows with piecewise linear σn = 10 −
9.94

3⊮{n≥niter/4}

(
n

niter
− 1

4

)
for the same other parameters as figure 4.

Figure 9: Changing radius GSPM-MMD flows with piecewise linear σn = 10 −
9.94

3⊮{n≥niter/4}

(
n

niter
− 1

4

)
for the same other parameters as figure 6.

III. Conclusion

The studied paper [1] proposes new sliced metrics, allowing to lift a metric on 1-
dimensional distribution to arbitrary spaces. It then explores a subcategory which is
equivalent to MMD distances. The behavior of such metrics is seen to suffer from prob-
lems similar to that of Total Variation on most probability measures with density, which
can be somewhat circumvented by tuning the RBF’s radius but requires extra work as
a result. The initial goal of generalizing sliced probability distributions to lower com-
putational complexity is somewhat forgotten, as the introduced GSPM-MMDs require
an extra Monte Carlo estimation because of the definition of the kernel as an integral.
Moreover, for some of the most popular metrics outside of optimal transport, the mo-
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tivation of slicing is not clear as if they already enjoy a closed form, for instance the
Kullback Leibler divergence between discrete probability measures (which is essentially
Monte Carlo estimation of the continuous case), adding an extra Monte Carlo step to
integrate over slices could potentially add more computational cost as well as reduced
accuracy. The idea of more general slices initially introduced in [13] may prove useful,
but mostly in the case of Wasserstein distances.

As a second contribution, a gradient flow is proposed in the case of GSPM-MMDs, and
the global convergence of the algorithm is proven, but is little more than the byproduct of
propostions 1 and 8 of [16], i.e. the retained metrics are a particular case of well-studied
objects. The articles’ numerical experiments are only on very simple distributions, as
even the MNIST dataset is far below the complexity of modern-day computational tasks.
Hyperparameter tuning can be more comple as the introduction of an extra Monte-Carlo
estimation of the kernel is needed and the RBF radius heavily influences the flows’
behavior.

As an opening for future work, this report considers the case of a varying radius to obtain
potentially more desirable flows which overcome local minima in the multimodal case.
The suggested scheme could possibly be proven to also converge to the global optimum
under regularity assumptions. From a theoretical standpoint, the relationship between
sliced distributions and dual norms could be studied, since many popular metrics can
be understood under this framework [18]. Some attempts made in the making of this
report failed to highlight such a relationship if the 1D metric ξ is a dual norm, although
it may still be feasible under more assumptions.

IV. Connexion with the course

The studied paper builds upon the notion of distances on the space of probability mea-
sures, first developed in optimal transport through the Wasserstein distances. The idea
of slicing distances was first introduced in the Wasserstein case in [4]. As we have seen
in the course, both Wasserstein and MMD (thus including GSPM-MMD) distances can
be represented in the same framework as dual norms.
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Robert Stöter. “Sliced-Wasserstein Flows: Nonparametric Generative Modeling via
Optimal Transport and Diffusions”. In: Proceedings of the 36th International Con-
ference on Machine Learning. Ed. by Kamalika Chaudhuri and Ruslan Salakhut-
dinov. Vol. 97. Proceedings of Machine Learning Research. PMLR, June 2019,
pp. 4104–4113. url: https://proceedings.mlr.press/v97/liutkus19a.html.

[16] Michael Arbel, Anna Korba, Adil SALIM, and Arthur Gretton. “Maximum Mean
Discrepancy Gradient Flow”. In: Advances in Neural Information Processing Sys-
tems. Ed. by H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox,
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