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Figure 1: Mean curvature motion of a noisy circle

ABSTRACT
The paper studied in this report builds upon earlier work to develop

a time discretization of mean curvature flow in the case of point

cloud varifolds. A generalized version of an approximation of mean

curvature is proposed and convergence bounds are derived. A semi-

implicit numerical scheme is built and desirable properties such

as planar barriers and sphere comparisons hold in certain cases.

This report highlights theoretical and practical limitations to these

extensions, and suggests directions of further improvement.
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1 INTRODUCTION
This report discusses the context, implications and limits of [7] and

aims to show the underlying concepts and results under a slightly

different light.
1
The report is organized as follows. Section 2 re-

introduces the background and notions upon which the authors of

[7] build their contributions. Section 3 critically addresses the main

contributions of the paper, their derivations and limitations. Section

4 proposes some directions inwhich the developed framework could

be refined and expanded upon. Conclusively, section 5 makes some

final remarks about the paper.

1
The author of this report has mostly studied fields related to probability theory,

explaining the ensuing point of view.

2 CONTEXT
2.1 Preceding work, motivations
This work builds upon the field of Geometric Measure Theory

(GMT), originally developed as an approach to solve Plateau’s prob-

lem ofminimal area surfaces given boundary conditions, formulated

by Lagrange in 1760. The notion of varifold is attributed to Almgren

[2], who introduced a measure-theoretic point of view on the gen-

eralized surfaces earlier defined by Young [12], as a model for soap

films in the study of this problem. As we shall see, this definition

generalizes that of a surface and is advantageous when considering

multiplicity. It also allows for generalization of the mean curvature

vector, which is relevant to Plateau’s problem as it gives the direc-

tion in which the area decreases the most. Therefore, analogously to

gradient descent, moving each point of a surface according to this

direction will converge towards the minimal surface. This evolution

is known as mean curvature motion or curvature flow. Despite the
historical origin of these concepts, they are very general and apply

to the study of all shapes/surfaces, which is of importance in vari-

ous fields such as physics, biology (e.g. molecules), medicine (e.g.

anatomy), architecture and more. A notable interest to the study

of mean curvature motion are the smoothing of surfaces/meshes

[9], considering they are often digitalized from laser scans which

output potentially noisy point clouds. A difficulty in that case is the

reconstruction of the mean curvature, and the main author of the

paper studied in this report has proposed the varifold framework

as an answer in preceding works [4–6]. As of the making of this
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report, it appears such a framework is still relatively scarcely uti-

lized by other authors in computational geometry or shape analysis,

with a few notable contributions in [8] which employs varifolds in

the context of computational anatomy furthered in [11] for shape

comparison and registration. The explanation of this unpopularity

given by [6] is firstly that varifold theory comprises very technical

results creating a certain barrier to entry, and secondly that its de-

velopment was not driven by discrete considerations of geometric

objects. The main author therefore aims to show relevance of GMT

in the current landscape of research in computational geometry as

a general tool for both continuous and discrete objects.

2.2 Varifolds
The central concept of this work is that of a 𝑑-varifold, sometimes

also referred to as generalized surface, formalized as follows.

Definition 2.1. A varifold 𝑉 is a Radon measure on R𝑛 × 𝐺𝑑,𝑛 ,

where 𝐺𝑑,𝑛 is the set of 𝑑-dimensional subspaces of R𝑛 .

Under the assumption that 𝑉 has compact support, which is

made later by the authors to prove some results we shall see in

section 3, a varifold can then be seen as a probability measure (up to

a normalizing constant). Equivalently,𝑉 can then be seen as the law

of a random variable (𝑋, 𝑃) valued in R𝑛 ×𝐺𝑑,𝑛 , and the meaning

of "generalized surface" can then be understood as a distribution

of 𝑑-dimensional "patches" defined by their location and direction.

The mass of 𝑉 defined as

∥𝑉 ∥(·) B 𝑉 (· ×𝐺𝑑,𝑛)
can then be thought of as the marginal distribution of 𝑋 . In this

report, we also denote the other marginal as

®𝑉 (·) B 𝑉 (R𝑛 × ·) .
One can then embed the d-Manifolds in the space of varifolds

through definition 2.2.

Definition 2.2. A smooth varifold associated to the𝑑-submanifold

𝑀 ⊂ R𝑛 is defined by

𝑉 (·) = H𝑑 ({𝑥 ∈ 𝑀, (𝑥,𝑇𝑥𝑀) ∈ ·}) .
Such a varifold is also denoted by the authors as H𝑑

|𝑀 ⊗ 𝛿𝑇𝑥𝑀
due to how it acts on measurable functions, however one may also

write it as a pushforward measure

𝑉 = 𝜋−1

𝑀 ♯H𝑑
|𝑀 (1)

where 𝜋−1

𝑀
is the "inverse tangent bundle" of 𝑀 , i.e. 𝜋−1

𝑀
: 𝑥 ↦→

(𝑥,𝑇𝑥𝑀). Then, considering that the Hausdorff measure is essen-

tially a generalization of the Lebesgue measure, one can see the

smooth varifold 𝑉 as a uniform distribution over the surface corre-

sponding to manifold𝑀 . Said otherwise, we also have that

®𝑉 = 𝑇·𝑀♯∥𝑉 ∥,
with𝑇·𝑀 : 𝑥 ↦→ 𝑇𝑥𝑀 . The discrete counterpart to the above is then

a discrete distribution, formalized as the following.

Definition 2.3. A point cloud d-varifold writes

𝑉 =

𝑁∑︁
𝑖=1

𝑚𝑖𝛿𝑥𝑖 ,𝑃𝑖

for some 𝑁 > 0 and with for 1 ≤ 𝑖 ≤ 𝑁 ,𝑚𝑖 > 0, 𝑥𝑖 ∈ R𝑛 , 𝑃𝑖 ∈ 𝐺𝑑,𝑛 .

Following [1], and writing for a C1
vector field 𝐹 : R𝑛 → R𝑛 of

jacobian 𝜕𝐹 , and 𝑃 ∈ 𝐺𝑑,𝑛 with orthogonal projection matrixΠ𝑃 ,

div𝑃 (𝐹 ) (·) B Tr(Π𝑃 𝜕𝐹 (·)) C ⟨Π𝑃 , 𝜕𝐹 (·)⟩, one can define the first

variation as follows.

Definition 2.4. The first variation of 𝑉 is the (Schwartz) distribu-

tion

𝛿𝑉 :

����� C1

𝑐 (R𝑛,R𝑛) −→ R

𝐹 ↦−→
∫
R𝑛×𝐺𝑑,𝑛

⟨Π𝑃 , 𝜕𝐹 (𝑥)⟩ 𝑑𝑉 (𝑥, 𝑃) .

The mean curvature at a point of a manifold𝑀 , intuitively the

average of the principal curvatures times the normal vector at

that point, is linked with the first variation when 𝑉 = 𝜋−1

𝑀
♯H𝑑

|𝑀
by the divergence theorem. To extend this idea, the generalized

mean curvature is then defined under regularity assumptions as

the vector-valued function 𝐻 verifying

∀𝐹 ∈ C1

𝑐 (R𝑛,R𝑛), 𝛿𝑉 (𝐹 ) = −
∫
R𝑛
𝐻 (𝑥) · 𝐹 (𝑥)𝑑 ∥𝑉 ∥(𝑥) + 𝔡⊥∥𝑉 ∥ (𝐹 )

with 𝔡⊥∥𝑉 ∥ is a distribution "orthogonal" to ∥𝑉 ∥ in the sense that

there exist a partition of R𝑛 in two borel sets 𝐴, 𝐵 such that the

restriction of 𝔡⊥∥𝑉 ∥ to test functions of support subset of 𝐴 is 0 and

∥𝑉 ∥(𝐵) = 0. Under our probabilistic notations and for such test

functions, one can understand the first variation as

E [div𝑃𝐹 (𝑋 )] = −E [𝐻 (𝑋 ) · 𝐹 (𝑋 )] .

2.3 Approximate mean curvature
The paper extends the notion of approximate mean curvature de-
fined in [6], which was initially developed as a way to define a

notion of curvature without any regularity assumptions. This is

made through convolution with smooth kernels

𝜌𝜀 (·) = 𝜀−𝑛𝜌
(
∥·∥
𝜀

)
, 𝜉𝜀 = 𝜀

−𝑛𝜉
(
∥·∥
𝜀

)
where 𝜌 , 𝜉 are smooth compacted in [−1, 1] and 𝜀 > 0, meaning

the kernels essentially converge to a dirac distribution when 𝜀 → 0.

The regularized first variation is then 𝛿𝑉 ∗ 𝜌𝜀 B 𝛿𝑉 (· ∗ 𝜌𝜀 ), and the
regularized mass is ∥𝑉 ∥ ∗ 𝜉𝜀 B

∫
𝜉𝜀 (𝑦 − ·) 𝑑 ∥𝑉 ∥(𝑦). With specific

assumptions on 𝜉 and 𝜌 , one can obtain a density of the regularized

first variation with respect to the regularized mass, giving rise to

the following definition.

Definition 2.5. For a d-varifold 𝑉 , denoting Ψ𝜀 the density of

𝛿𝑉 ∗ 𝜌𝜀 with respect to ∥𝑉 ∥ ∗ 𝜉𝜀 , the 𝜀-approximate mean curvature
is defined as

𝐻𝜀 (·,𝑉 ) B −𝑑
𝑛
Ψ𝜀 (·).

The constant
𝑑
𝑛 is due to the choice of 𝜉 , 𝜌 in light of better

numerical results understood through taylor expansion in 𝜀 as

detailed in [6]. Therein is proven that one recovers convergence to

the mean curvature in the case 𝑉 = 𝜋−1

𝑀
♯H𝑑

|𝑀 for 𝜀 → 0.

2.4 Mean curvature flow
The mean curvature flow for varifolds was firstly studied by Brakke

[3], introducing a quite general framework for dynamical systems

driven by surface tension. The so-called Brakke flow was originally

defined to the effect of the following.
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Definition 2.6. A family (𝑉𝑡 )𝑡 ∈R+ of 𝑑-varifolds is moving by its
mean curvature if

∀𝑡 ≥ 0,∀𝐹 ∈ C1

𝑐 (R𝑛,R𝑛)
𝑑

𝑑𝑡
∥𝑉𝑡 ∥(𝐹 ) ≤ 𝛿𝑉𝑡 (𝐹 ).

Some existence and uniqueness properties for Brakke flow were

later investigated in [10]. However, such properties do not hold in

general when singularities (e.g. triple points) appear. Thus, multiple

schemes for mean curvature flow can be investigated.

3 MAIN CONTRIBUTIONS
3.1 Extension of approximate curvature for

smooth varifold and consistency
The authors first propose mild variations of approximate curvature,

seemingly not strongly motivated as they explicit that it has no

real advantage and only serves to show different behaviors. More

precisely, one can compute a density with respect to Lebesgue of

the regularized first variation as

𝑔𝜀 : 𝑥 ↦→ 1

𝜀𝑛+1

∫
R𝑛×𝐺𝑑,𝑛

𝜌′
(
∥𝑦 − 𝑥 ∥

𝜀

)
Π𝑃

(
𝑦 − 𝑥
∥𝑦 − 𝑥 ∥

)
𝑑𝑉 (𝑦, 𝑃).

(2)

The authors propose replacing the projector Π𝑃 in (2) with different

possiblities of projectors Π depending on 𝑥,𝑦 ∈ R𝑛 and 𝑃 ∈ 𝐺𝑑,𝑛 ,

i.e. define

𝐻Π
𝜖 (𝑥,𝑉 ) = − 𝑑

𝑛𝜀

∫
R𝑛×𝐺𝑑,𝑛

𝜌′
(
∥𝑦 − 𝑥 ∥

𝜀

)
Π(𝑦 − 𝑥)
∥𝑦 − 𝑥 ∥ 𝑑𝑉 (𝑦, 𝑆)∫

R𝑛
𝜉

(
∥𝑦 − 𝑥 ∥

𝜀

)
𝑑 ∥𝑉 ∥(𝑦)

. (3)

Then, they obtain the following proposition which we next discuss.

Proposition 3.1. For 𝑑 = 𝑛 − 1, 𝑀 ⊂ R𝑛 a C2 𝑑-manifold of
mean curvature vector 𝐻 : 𝑀 → R𝑛 , 𝑉 = 𝜋−1

𝑀
♯H𝑑

|𝑀 , and for

Π ∈
{
Π𝑃 ,−2Π𝑃⊥ , 2Id,Π (𝑇𝑥𝑀 )⊥ ◦ Π𝑃 ,−2Π (𝑇𝑥𝑀 )⊥ ◦ Π𝑃⊥ , 2Π (𝑇𝑥𝑀 )⊥

}
,

then for any 𝑥 ∈ 𝑀 ,

𝐻Π
𝜀 (𝑥,𝑉 ) −−−−→

𝜀→0

𝐻 (𝑥) .

Additionally, if𝑀 is of class C3,
��𝐻Π

𝜀 (𝑥,𝑉 ) − 𝐻 (𝑥)
�� = 𝑂 (𝜀).

It is apparent that this generalization is very partial as the result

is proven only for 6 specific projectors, which are not really given

meaning by the authors and the provided proof is not constructive

either as it only checks through brute computation that they indeed

verify the above property. Additionally, while the result is claimed

to hold for any codimension, it is only proven for codimension

1 for simplification. Overall, this result and the way it is derived

seem to illustrate some of the previously discussed reasons for the

unpopularity of the varifold framework: heavy computations are

required to make only a tiny step of generalization.

3.2 Stability of approximate curvature
Next, the authors investigate stability with respect to the vari-

fold and location, i.e. want to show convergence of 𝐻Π
𝜀 (𝑧,𝑊 ) to

𝐻 (𝑥,𝑉 ) when 𝜀 → 0, 𝑧 → 𝑥 , and𝑊 → 𝑉 in the sense of weak-*

convergence of measures. To this end, the paper works under the

assumption of 𝑑-regularity as defined below.

Definition 3.2. A 𝑑-varifold 𝑉 is d-regular if there exist 𝐶0 ≥ 1

and 𝑟0 > 0 such that

∀𝑥 ∈ supp∥𝑉 ∥,∀0 < 𝑟 ≤ 𝑟0,
𝑟𝑑

𝐶0

≤ ∥𝑉 ∥(B(𝑥, 𝑟 )) ≤ 𝐶0𝑟
𝑑 .

Note that the above definition holds in the case of a smooth

varifold 𝑉 = 𝜋−1

𝑀
♯H𝑑

|𝑀 from the properties of the Hausdorff mea-

sure. To achieve the desired result, two distances are utilized by

the authors, namely the flat distance and a modified Prokhorov

distance defined below.

Definition 3.3. The flat or localized bounded lipshitz distance on
an open𝑈 of a locally compact separable metric space X between

Radon measures 𝜇 and 𝜈 is

Δ𝑈 (𝜇, 𝜈) B sup

{∫
X
𝜑𝑑 (𝜇 − 𝜈)

����𝜑 1-Lipschitz,

supX |𝜑 | ≤1,

supp𝜑⊂𝑈

}
.

Definition 3.4. The modified 𝑑-Prokhorov distance between two

finite Radon measures 𝜇, 𝜈 on R𝑛 is defined as

𝜂𝑑 (𝜇, 𝜈) B inf

{
𝜀 > 0

���∀𝐵 ⊂ R𝑛closed ball,
𝜇 (𝐵)≤𝜈 (𝐵𝜀 )+𝜀𝑑 ,
𝜈 (𝐵)≤ 𝑢 (𝐵𝜀 )+𝜀𝑑

}
,

where 𝐵𝜀 =
⋃

𝑥∈𝐵 B(𝑥, 𝜀).

This second definition is straightforwardly shown to still be

a distance. Now, to formulate their stability result, the authors

introduce a combination of the previous distances on varifolds as

𝛿 (𝑉 ,𝑊 ) B sup

𝑥∈supp∥𝑉 ∥
𝑟>0

{
Δ

˚B(𝑥,𝑟 ) (∥𝑉 ∥, ∥𝑊 ∥)

(𝜂𝑑 (∥𝑉 ∥, ∥𝑊 ∥) + 𝑟 )𝑑

}
. (4)

Note that this is not a distance, and not symmetric: for 𝑉 = 𝛿𝑥
and 𝑊 = 3

4
𝛿𝑦 with 𝑥 ≠ 𝑦, Δ

˚B(𝑥,𝑟 ) (∥𝑉 ∥, ∥𝑊 ∥) ∈
{
1, 1

4

}
and

equality with 1 is achieved for small enough 𝑟 , giving 𝛿 (𝑉 ,𝑊 ) =
1

𝜂𝑑 ( ∥𝑉 ∥,∥𝑊 ∥ )𝑑 and similarly, one gets 𝛿 (𝑊,𝑉 ) = 1

4𝜂𝑑 ( ∥𝑉 ∥,∥𝑊 ∥ )𝑑 ≠

𝛿 (𝑉 ,𝑊 ). One can also see that it only accounts for the mass of

the varifolds, i.e. it can be null without implying equality of the

compared measures. Nevertheless, the authors show that it goes to

0 when its arguments get close for the weak-* topology, and obtain

a stability for the extended approximate mean curvature defined in

(3), which consists in the main result of the paper stated as follows.

Theorem 3.5. For 𝑉 a d-regular varifold (for a constant 𝐶0) of
finite mass, (𝑉𝑖 )𝑖 a sequence of 𝑑-varifolds weak-* converging to 𝑉
such that their masses are all compactly supported in 𝐾 ⊂ R𝑛 , (𝑥𝑖 )
a sequence of R𝑛 converging to 𝑥 ∈ 𝑀 , (𝜀𝑖 ) a sequence of (0, 1)
converging to 0 and such that ∥𝑥 − 𝑥𝑖 ∥ + 𝜂𝑑 (∥𝑉 ∥, ∥𝑉𝑖 ∥) ≤ 8(1 +
(2𝐶0)

1

𝑑 +𝐶
2

𝑑

0
). Then,

(i) 𝛿 (𝑉 ,𝑉𝑖 ) → 0,

(ii)

��𝐻Π
𝜀𝑖
(𝑥𝑖 ,𝑉𝑖 ) − 𝐻Π

𝜀𝑖
(𝑥,𝑉 )

�� = 𝑂 (
𝛿 (𝑉 ,𝑉𝑖 )+∥𝑥−𝑥𝑖 ∥

𝜀2

𝑖

)
.

The authors prove (i) by contradiction, using definitions 3.3 of

the flat distance and (4) of 𝛿 as suprema to define sequences of

balls and functionals, and applying a result of analysis to extract a

uniformly converging sequence of lower bounded infinity norm,

but of limit shown to be null. The proof of (ii) is made through

heavy computations. While this result is quite general, it gives a

rather coarse bound in the sense that it is not simple to get an upper
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bound on 𝛿 (𝑉 ,𝑉𝑖 ) from bounds on the flat distance or Prokhorov

distance given the definition of 𝛿 as a quotient of both, and since 𝛿

does not satisfy the triangle inequality, it is difficult to manipulate

this bound to obtain further results. Thus, the rate of convergence

in the above bound is basically untractable.

For the case of interest when the limit varifold is smooth, the

authors derive the following corollary from theorem 3.5 and propo-

sition 3.1.

Corollary 3.6. For 𝑉 = 𝜋−1

𝑀
♯H𝑑

|𝑀 where 𝑀 is a C3 compact
𝑑-manifold without boundary, (𝑉𝑖 )𝑖 a sequence of 𝑑-varifolds weak-*
converging to𝑉 such that their masses are all compactly supported in
𝐾 ⊂ R𝑛 , (𝑥𝑖 ) a sequence ofR𝑛 converging to 𝑥 ∈ 𝑀 , (𝜀𝑖 ) a sequence of
(0, 1) converging to 0 and such that ∥𝑥 −𝑥𝑖 ∥ +𝜂𝑑 (∥𝑉 ∥, ∥𝑉𝑖 ∥) = 𝑜 (𝜀𝑖 ),
then ���𝐻Π

𝜀𝑖
(𝑥𝑖 ,𝑉𝑖 ) − 𝐻 (𝑥,𝑉 )

��� = 𝑂 (
𝛿 (𝑉 ,𝑉𝑖 ) + ∥𝑥 − 𝑥𝑖 ∥

𝜀2

𝑖

+ 𝜀𝑖

)
,

And thus 𝐻Π
𝜀𝑖
(𝑥𝑖 ,𝑉𝑖 ) → 𝐻 (𝑥,𝑉 ) as soon as

√︁
𝛿 (𝑉 ,𝑉𝑖 ) + ∥𝑥 − 𝑥𝑖 ∥ =

𝑜 (𝜀𝑖 ).

A problem arising when trying to apply the above result is that

the requirements on 𝜀𝑖 are also impossible to verify in practice,

meaning that one gets no information on how to choose the pa-

rameter 𝜀: the above result states that it should be "large enough"

compared to the uncomputable quantities but should still get "close"

to 0.

3.3 Mean curvature motion scheme
Under the hypothesis that the observated point cloud (𝑥𝑖 )𝑁𝑖=1

is

close to a manifold𝑀 , the authors follow "standard" approaches to

try and define a point cloud varifold 𝑉 =
∑𝑁
𝑖=1

𝑚𝑖𝛿𝑥𝑖 ,𝑃𝑖 to approx-

imate 𝜋−1

𝑀
♯H𝑑

|𝑀 . Under motivations that are not entirely clear to

the author of this report, the masses𝑚𝑖 are chosen through regu-

larization of

∑
𝑖 𝛿𝑥𝑖 andH𝑑

|𝑀 by 𝜆𝛿 defined for a kernel 𝜆 and 𝛿 > 0

similarly as in section 2.3, and approximation of the regularized

Hausdorff measure by a first order approximation written 𝐶𝜆𝛿
𝑑

with𝐶𝜆 the volume weighted by 𝜆 of the unit ball in R𝑑 . This yields
masses

𝑚𝑖 =
𝐶𝜆𝛿

𝑑∑𝑁
𝑗=1

𝜆

( ∥𝑥𝑖−𝑥 𝑗 ∥
𝛿

) ,
and a particular case considered by the authors is when 𝜆 is the

indicator function I(−1,1) , in which case the mass becomes

𝑚𝑖 =
𝜔𝑑𝛿

𝑑

𝑘𝛿
, 𝑘𝛿 B

��{ 𝑗, ∥𝑥 𝑗 − 𝑥𝑖 ∥ < 𝛿}�� (5)

with 𝜔𝑑 the volume of the unit ball in R𝑑 . The authors note that
no covergence result seems to be known for such an estimator,

meaning that the stability shown in corollary 3.6 does not apply. We

further discuss this scheme and propose a simpler one (with some

convergence property under a different point of view) in section

4. As for the directions 𝑃𝑖 , they are computed in a more intuitive

way by choosing a neighborhood of 𝑥𝑖 , and applying (possibly

regularized) Principal Component Analysis to the resulting subset

of points, with target dimension 𝑑 being an estimate of the intrinsic

dimension of the unknown𝑀 . This allows one to have a consistent

Figure 2: Computation of a local tangent 𝑃𝑖 in the case of a
noisy circle

local dimension robustly to noise. Such a process is illustrated in

figure 2. With such estimators built, which for an input point cloud

𝑋 = (𝑥1, . . . , 𝑥𝑁 ) ∈ R𝑛×𝑁 are denoted as 𝑚𝑖 (𝑋 ) and 𝑃𝑖 (𝑋 ), the
authors formulate (time continuous) mean curvature motion in the

case of point cloud varifolds. It writes as a system of differential

equations with initial conditions: for given initial point cloud 𝑋0,

we wish to find 𝑋 (𝑡) = (𝑥1 (𝑡), . . . , 𝑥𝑁 (𝑡)) such that{
∀𝑖, 𝑑

𝑑𝑡
𝑥𝑖 (𝑡) = 𝐻Π

𝜀 (𝑥𝑖 (𝑡),𝑉 (𝑡)),
𝑋 (0) = 𝑋0,

(6)

where 𝑉 (𝑡) B ∑𝑁
𝑖=1

𝑚𝑖 (𝑋 (𝑡))𝛿𝑥𝑖 (𝑡 ),𝑃𝑖 (𝑋 (𝑡 ) ) . A solution of (6) is

subsequently shown to have planar barriers, i.e. if a polytope con-
tains the initial point cloud, then it contains the entirety of the

trajectory of the flow. This only holds if locally, Π(𝑥 𝑗 (𝑡) − 𝑥𝑖 (𝑡))
points inside the convex hull of the point cloud, which always

holds for Π = 2Id, but is not always the case for the other choices

given in proposition 3.1. The authors claim that for the choices

Π ∈
{
−2Π𝑃⊥

𝑗
,−2Π𝑃⊥

𝑖
◦ Π𝑃⊥

𝑗
, 2Π𝑃⊥

𝑖

}
it appears to them that it could

lead to a useful constraint on the definition of the 𝑃𝑖 , without more

elaboration, while for the remaining choices the assumptions do

not hold for most reasonable choices of 𝑃𝑖 . Considering having
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such a planar barrier property is desirable to avoid divergence of

the flow, it seems that the work made in proposition 3.1 to gener-

alize approximate mean curvature to more projectors is of limited

use, as already 2 of the 6 proposed projectors fail to obtain such

property, and in fact only one other than 2Id will be kept in light

of numerical experiments. Similarly, the authors show a sphere

comparison principle, stating that the flow is contained in a sphere

of radius varying with 𝑡 , but said radius is only shown to decrease

for Π = 2Id and may be increasing for other choices of projector

depending on the way the 𝑃𝑖 are computed.

Nevertheless, the authors go on to derive the time discretization

of 6 with step 𝜏 , as the following semi-implicit scheme with the

obvious adapted notations:

𝑥𝑘+1

𝑖 = 𝑥𝑘𝑖 + 𝜏𝐻Π
𝜀

(
𝑥𝑘+1

𝑖 ,

𝑁∑︁
𝑖=1

𝑚𝑖 (𝑋𝑘 )𝛿𝑥𝑘+1

𝑖
,𝑃𝑖 (𝑋𝑘 )

)
. (7)

It is semi-implicit in the sense that it is implicit with respect to

the positions 𝑥𝑘
𝑖
but explicit in the masses and directions. It is

then shown that (7) amounts to solving an invertible linear system,

allowing one to compute the flow although with relatively high

computational cost due to the complexity of inverting a linear

system of large size over possibly many iterations for small 𝜏 . The

authors then derive similar plane barrier and sphere comparison

properties as before in this time-discrete setting.

3.4 Numerical experiments
The paper presents some numerical results, for which we quickly

see the irrelevance of most of the projectors which make the mo-

tion diverge or be highly sensitive to noise. Nevertheless, the case

Π = Π𝑃⊥
𝑖
fares decently against toy cases, even when triple points

emerge. The authors do not always compare these results with the

base case Π = 2Id though, and do not show any other algorithms

for that matter. It is therefore difficult to make clear conclusions

about the effectiveness of the method in practice, given that no

complex, real life datasets are investigated.

4 EXTENSIONS
We explicit a few directions in which one could attempt to extend

the framework developed in the paper. First, consider definition

2.2 of a smooth varifold. As seen in section 2, the choice of the

Hausdorff measure can be seen as the uniform distribution on the

considered manifold. Thus, we propose to introduce a generalized

smooth varifold as follows.

Definition 4.1. A generalized smooth varifold 𝑉 associated to a

𝑑-manifold𝑀 is such that

𝑉 = 𝜋−1

𝑀 ♯∥𝑉 ∥.

Such a generalization could be useful in the sense that, in a statis-

tical setting, the observations may be sampled non-uniformly over

the surface. Considering the application to laser scans of surfaces

mentioned by the authors, some nontrivial yet realistic surfaces

may have locations harder to reach for the light beams, meaning

they will be sampled less often that the rest of the shape. A simple

example is provided figure 3.

Figure 3: V-shaped surface on which the inside (shaded red)
is less likely to be sampled from a laser scan.

Thus, one could attempt to study the behavior of such varifolds to

get a more general estimator of the mass that could be more robust

to non-uniform samplings of the surface of interest. Secondly, in (5),

one can remark that if the points (𝑥𝑖 ) are seen as an i.i.d. uniform

sampling of𝑀 , then the above coefficient would intuitively behave

like
1

𝑛 as the number of observations 𝑛 grows, since
𝑘𝛿
𝑛 can be seen

as Monte Carlo estimation of the volume of the 𝑑-ball of radius

𝛿 on 𝑀 , which is given by the numerator. The simpler scheme

of setting 𝑚𝑖 = 1

𝑛 could have been suggested from the start: it

is interpretable as an empirical process, which has the following

convergence property in a quite general case.

Proposition 4.2. Let𝑉 be a varifold of finitemass, and𝑋1, . . . , 𝑋𝑁

be i.i.d random variables valued in R𝑛 and of law ∥𝑉 ∥
∥𝑉 ∥ (R𝑛 ) . Then,

with probability 1,

1

𝑁

𝑁∑︁
𝑖=1

𝛿𝑋𝑖
⇀∗ ∥𝑉 ∥

∥𝑉 ∥(R𝑛)

where⇀∗ denotes the weak-* convergence.

In particular, since the mean curvature is invariant to rescalings

of the mass of a varifold, and since theorem 3.5 in fact only relies

on weak-* convergence of the mass, it could be applied for large 𝑁

to recover some convergence of approximate mean curvature. The

above proposition is straightforward to prove by applying the defi-

nition of weak-* convergence and using the law of large numbers.

Similarly, one could study the convergence in this statistical point

of view of the previously presented estimates of the directions.

5 CONCLUSION
The work proposed in [7] has for main contributions the gener-

alization of approximate mean curvature previously explored in

[6] along with convergence bounds, and the derivation of a time-

discretization of the (approximate) mean curvature flow in a semi-

implicit scheme. We highlighted limitations in the assumption of

uniform sampling, the lack of motivation and properties of the

newly introduced projectors, as well as the impracticality of the

shown convergence bounds. Overall, the presented methods seem

to lack clear purpose i.e. a clear problem to solve, and is presented

without much intuitivity (the intuitions given in this paper are

original and were absent in [7]), which contributes to the barrier
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of entry to the field of varifold theory. While the numerical experi-

ments seem to show some merit in favor of the authors’ method,

it is not compared to other existing procedures and its relevance

is thus difficult to assess. This paper seems to highlight both some

strengths of the varifold framework in its generalty, and its main

weaknesses in its technicality. On a final note, we present some

slight extensions of the paper that could hope to be developed and

fill in some of the found gaps, namely the non-uniform smooth var-

ifold setting as well as a simpler, theoretically supported estimator

for the masses of a discrete approximation of a smooth varifold.
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