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I. Introduction

This report discusses the results, limits and implications of [1]. The latter deals with capturing dependency structures within
multivariate extreme distributions in high dimensional settings, by expliciting through the angular measure a smaller subset
of directions along which extremes may happen. If such directions can be expressed with a small number of coordinates, one
can scale up algorithms suited to low dimensions to more complex problems. An estimator of the repartition of the angular
measure’s mass on sub-cones is constructed and VC-type non-asymptotic convergence bounds are derived. A numerical study
is made to provide evidence that ”sparse” dependencies occur in real datasets. The method is applied to detecting anomalies
as extremes in uncommon directions in order to illustrate its relevance. This report is organized as follows. Section II
introduces the notations and states the problem of interest in the paper, and critically addresses the assumptions made by
the authors. Section III explains the main theoretical contributions of the paper and discusses their limits and implications.
Section IV covers the application to anomaly detection while section V challenges a reimplementation of the paper’s algorithm
against other methods and further investigates parameter influence. Finally, section VI summarizes the main points of the
discussion and gives tentative directions in which the paper could be expanded upon.

II. Problem formulation and hypotheses

The problem of interest in this paper can be summarized as finding the few main directions in which multivariate data
may be extreme, so that fewer dimensions are enough to characterize its tail distribution. This is formalized as follows:
let X = (X1, . . . , Xd) be a random vector valued in Rd endowed with the infinity or supremum norm, denote (Fj)1≤j≤d

the marginal cumulative distribution functions, V :=
(

1
1−Fj(Xj)

)
1≤j≤d

. Consider the usual multivariate regular variation

hypothesis, i.e. assume that we have a measure µ on [0,∞]
d \ {0} such that

∀v, nP
(
1

n
V ∈ [0,v]

c

)
−→
n→∞

µ ([0,v]
c
) . (1)

A ”direction” is going to correspond to a group of nonzero coordinates, i.e. a subset of indices α ⊂ {1, . . . , d}. The set of
vectors along such a direction is denoted

Cα :=
{
v ≥ 0

∣∣∣ ∥v∥∞ ≥ 1,v|α > 0,v|αc

= 0
}
,

where for v = (v1, . . . , vd), v|α refers to the vector
(
vj
)
j∈α

, and αc to the complementary set of α in {1, . . . , d}. The

corresponding directions (i.e. unit vectors) are denoted Ωα := Sd−1
∞ ∩ Cα where Sd−1

∞ is the sphere for the infinity norm.
Considering the Cαs have boundary with possibly nonzero mass (they have empty interior, meaning their boundary is their
closure) and thus the type of convergence in (1) does not necessarily hold for such sets, this motivates the introduction of
truncated rectangles, namely for ε > 0,

Rε
α :=

{
v ≥ 0

∣∣∣ ∥v∥∞ ≥ 1,v|α ≥ ε,v|αc

< ε
}
.

That way, one can work with continuity sets of µ and thus obtain statistical estimates with convergence guarantees: one can
show by splitting Rε

α as the difference of two sets decreasing in ε and using the continuity from above property of measures
that

µ (Rε
α) −→

ε→0
µ (Cα) . (2)
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The problem is then, given i.i.d. samples of X’s distribution, to build an estimator of M := (µ (Cα))α⊂{1,...,d} and to derive
convergence bounds. In the case where the number of αs for which the above quantities are nonnegligible is low with respect
to 2d, one obtains a ’sparse’ representation, and if such directions α contain only few coordinates, the representation is
low-dimensional.

In order to give an answer to this problem, the authors make 3 major assumptions (in addition to the regular variation
hypothesis) which we now discuss.

Assumption 1. The marginal cdfs (Fj)1≤j≤d are continuous.

While this is a standard assumption in our context, it is not always verified, as it does not apply as soon as certain singletons
have nonzero mass under one of the marginal distributions. The obvious counterexample is that of a variable valued in a
discrete space, e.g. binary variables or integer measurements. A not so immediately apparent yet real example is that of
variables valued in R+ taking the value 0 with nonzero probability, for instance power consumption of certain components of
a system that are not required to run at all times. Therefore, this assumption is not as trivial as it may seem at first glance.

Assumption 2. For ∅ ̸= α := {i1, . . . , ir} ⊂ {1, . . . , d}, µα(·) := µ(· ∩ Cα) is absolutely continuous with respect to
dxα := dxi1 . . . dxir .

While assumption 2 implies assumption 1, they are not equivalent and there can be possible yet nonobvious cases where
the latter applies yet not the former. Let us consider the case where one of the considered marginals is deterministically
determined by another, i.e. X2 = f(X1) for some increasing bijection f . Note that if one does not carefully examine the
interpretation of each feature, such a dependancy might be difficult to notice by looking only at the data itself. Then, we
have F2(x) = F1(f

−1(x)) and thus

V 2 =
1

1− F2(X2)
=

1

1− F1(f−1(X2)
= V 1.

Consider Aε := {(v1, v2) ≥ 1| |v1 − v2| ≤ ε}, so that

nP

(
V

n
∈ Aε

)
= nP

(
V 1 ≥ n,

∣∣V 1 − V 1
∣∣ ≤ ε

)
= nP

(
V 1 ≥ n

)
−→
n→∞

1

by the regular variation hypothesis. For εℓ = 2−ℓ, the sequence (Aεℓ)ℓ is decreasing, meaning that for A :=

+∞⋂
ℓ=0

Aεℓ ,

µ (A) = lim
ℓ→+∞

µ (Aεℓ) = 1

since µ is a measure. However, A = {(v1, v2) ≥ 1|v1 = v2} has Lebesgue measure 0, meaning assumption 2 does not hold.
This shows the importance of preprocessing and removing features adding no information.

Under assumption 2, and denoting Φ(·) := µ
({

v ≥ 0
∣∣∣ ∥v∥∞ ≥ 1, v

∥v∥∞
∈ ·
})

the angular measure defined on Sd−1
∞ , the faces

Ωα,i0 :=
{
v ∈ Ωα

∣∣∣ vi0 = 1,v|α\{i0} < 1
}

are shown to contain all of Φ’s mass, and the restrictions Φα,i0 of Φ to Ωα,i0 to be absolutely continuous with respect to

dxα\{i0}, and therefore to have densities
dΦα,i0

dxα\{i0}
. The last assumption can then be written as follows.

Assumption 3. The angular density is uniformly bounded, so that there exists M > 0 verifying∑
β⊂{1,...,d}

|β|≥2

sup
i∈β

sup
Ωβ,i

dΦα,i0

dxα\{i0}
< M. (3)

Since the densities are hardly computable, this hypothesis appears challenging to verify in practice. However, unbounded
probability density functions are quite pathological, making assumption 3 very reasonable within our context.
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III. Main theoretical results

III.1 Nonparametric estimation of M
Considering the Vis cannot be directly computed from the (unknown) true marginals, the most standard approach is to
estimate the latter through the empirical cumulative distribution functions and compute the corresponding rank transform,
giving us estimates denoted as V̂i. In a less general setting, when there is a strongly motivated parametric model on the
marginals of the data, it may be beneficial to investigate the influence of a parametric estimation of the cdf, although that
is outside the scope of the paper. Denoting P̂n the empirical distribution of the V̂i and following (1), it is most natural to
estimate µ with

µ̂n(·) :=
n

kn
P̂n

(
n

kn
·
)
,

where kn ∈ N is such that kn −→
n→∞

∞ and n
kn

−→
n→∞

∞. To proceed with the estimation of µ specifically on the cones Cα,
one cannot directly apply the above estimate to such sets as except for α = {1, . . . , d}, they almost surely contain no sample
and are not necessarily continuity sets of the exponent measure as discussed in section II. Thus, one has to consider slighlty
larger sets with nonzero volume, that is the previously introduced Rε

α. This gives the main construction of the paper, being
the estimator

M̂(α) := µ̂n(R
ε
α).

The latter is easily computed as

M̂(α) =
1

kn

kn∑
i=1

1

{
V̂

|α
σ(i) ≥

n

kn
ε, V̂

|αc

σ(i) <
n

kn
ε

}
, (4)

where σ sorts the original data for the infinity norm, i.e.
∥∥Xσ(1)

∥∥
∞ ≥ · · · ≥

∥∥Xσ(n)

∥∥
∞. The authors then go on to prove

non-asymptotic error bounds so as to confirm the validity of this approach and get information about the rate of convergence,
in a way we now sketch.

III.2 Bounding the error
∥∥∥M̂ −M

∥∥∥
∞

The first remark is that the triangle inequality gives an upper bound on the error as the sum of the error related to the
estimation of µ with µ̂n and the bias introduced by the use of Rε

α instead of Cα, namely:∥∥∥M̂ −M
∥∥∥
∞

≤ max
α

|µ− µ̂n| (Rε
α) + max

α
|µ(Cα)− µ(Rε

α)| , (5)

where we denote |µ− µ̂n| (·) := |µ(·)− µ̂n(·)| for brevity. The method employed in the paper is then to bound each term
separately. For the first one, the author extends bounds they have developed in [2] to a class of rectangles extending both
the Rε

αs and the [0,v]
c
s. Intuitively, this class allows the values of ε to differ based on the coordinate, and allows the two

considered sets of coordinates to be non complementary, which is formalized as

R(x, z, α, β) :=
{
y ∈ [0,∞]

d
,y|α ≥ x|α,y|β < z|β

}
. (6)

In the same spirit, one defines a ”generalized cumulative distribution function” of U := V−1 (which has marginals U [0, 1]
under assumption 1) as

F̃α,β(x, z) = P (U ∈ R(x, z, α, β)) , (7)

and the associated ”extreme” version
gα,β(x, z) := lim

t→∞
F̃α,β

(
t−1x, t−1z

)
(8)

where ”extreme” is understood over V, whence the factor t−1 when considering U. In that way, we have from the regular
variation

gα,β(x, z) = µ
(
R
(
x−1, z−1, α, β

))
. (9)

Then, when considering the natural empirical version ĝn,α,β of gα,β from (8) (that is, by computing the probability defining

F̃α,β with the empirical distribution and using an order statistic instead of t), one actually recovers that

ĝn,α,β = µ̂n

(
R
(
x−1, z−1, α, β

))
. (10)
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Therefore, it becomes clear that uniformly bounding the error between the ĝn,α,βs and the gα,βs will yield a bound on the
first term of (5), which allows the authors to extend their previous work in [2] to obtain new bounds. Writing ε̃ such that

ε̃|α = 1|α, ε̃|α
c

= ε|α
c

, one can recover the desired rectangles as

Rε
α = R(ε, ε, α, αc) \R(ε, ε̃, α, {1, . . . , d}), (11)

and from the triangle inequality and the fact that for ε < 1, ε̃ ≥ ε, we have

|µ− µ̂n| (Rε
α) ≤ |µ− µ̂n| (R(ε, ε, α, αc)) + |µ− µ̂n| (R(ε, ε̃, α, {1, . . . , d}))

≤ 2 max
β

sup
ε≤x,z

|µ− µ̂n| (R(x, z, α, β)) . (12)

From (9) and (10), this last term can be rewritten in terms of the gα,βs and their empirical counterparts, and using a slightly
altered version of the VC-type bounds in [2], one can bound the first term of (5): there exists C > 0 such that for 0 < ε < 1

4 ,
δ ≥ e−kn , with probability at least 1− δ,

max
α

|µ− µ̂n| (Rε
α) ≤ Cd

√
1

εkn
ln

(
d+ 3

δ

)
+ 2 max

α,β
sup

0≤x,z≤2ε−1

∣∣∣∣ nkn F̃α,β

(
kn
n
x,

kn
n
z

)
− gα,β(x, z)

∣∣∣∣ . (13)

Note that the assumptions on δ is quickly satisfied when kn grows, meaning one can easily obtain a bound holding with
probability almost 1.

To bound the second term in (5), the authors use their assumptions 2 and 3 to show through technicalities that

|µ(Rε
α)− µ(Cα)| ≤ Md2ε. (14)

This allows one to have convergence towards 0 proportional to ε, although said proportional factor can quickly be large when
the dimension increases.

Thanks to the previous bounds (5), (13) and (14), the main result of the paper can be stated:

Theorem 1. Under assumptions 2 and 3, there exists C < 0, such that for 0 < ε < 1
4 , δ ≥ e−kn , with probability at least

1− δ, ∥∥∥M̂ −M
∥∥∥
∞

≤ Cd

(√
1

εkn
ln

(
d+ 3

δ

)
+Mdε

)
+ 2 max

α,β
sup

0≤x,z≤2ε−1

∣∣∣∣ nkn F̃α,β

(
kn
n
x,

kn
n
z

)
− gα,β(x, z)

∣∣∣∣ . (15)

Note that the second term is a slightly different bound to that stated in the paper, but it follows more directly from the above,
and how the authors removed the maximum over β in favor of αc was not made explicit. Although, it ultimately makes little
difference since the term written in (15) is just as easily shown to go to zero following [3] and taking the maximum over a
finite class. It is a looser bound, but since neither have explicit convergence rates, they basically give the same information.
We now discuss this result and the underlying methodology.

The first term of the bound (15) quantifies the trade-off in ε: reducing its value by an order of magnitude shrinks the ”ε-
thickening bias” the same amount but increases the estimate error by at least half an order of magnitude. Under this light,
the ”standard” value of ε = 0.01 suggested by the authors in the numerical section discussed in section V can be seen as a
choice to multiply the estimate error by not much more than one order of magnitude. As highlighted by the authors, the

dependency in O
(

1√
kn

)
is not too surprising given classical VC inequalities and the fact that only kn (extreme) samples are

effectively counted to estimate the mass on truncated cones. The second term however, is much less informative in regards
to convergence speed. But given its derivation, one can imagine this is in practice a rather loose bound, leaving hope of
reasonably fast convergence.

The assumptions 2 and 3 are only used by the authors to bound the ε-thickening error, as the framework developed in [2]
needs no such assumptions. While the latter end up showing guidance for parameter choice as dicussed above and further
explored in section V, one can see that convergence will still hold should these assumptions fail to be verified.

III.3 Thresholding M̂

Considering data is in practice noisy, one will often obtain some αs for which M̂(α) is nonzero but negligible, so that one
could assume the corresponding M(α) is null. To choose only the meaningful directions, the authors propose removing values

of M̂(α) under a threshold computed as p
∣∣∣{α ∣∣∣ M̂(α) > 0

}∣∣∣−1∑
α M̂(α) i.e. some proportion p > 0 of the average mass of
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faces with positive mass. Denoting M̃ the estimator obtained via this thresholding operation, its deviation from M̂ is by
definition at most the threshold, which means that∥∥∥M̃ −M

∥∥∥
∞

≤
∥∥∥M̂ −M

∥∥∥
∞

+ p
∣∣∣{α ∣∣∣ M̂(α) > 0

}∣∣∣−1∑
α

M̂(α). (16)

Such a thresholding therefore adds an error term proportional to p, so that we recover convergence when p → 0. In fact, the
authors show that M̂(α) can be seen as an empirical risk minimizer, corresponding to the natural L2 loss considering what
we are estimating, namely

R :

∣∣∣∣∣ R2d−1 −→ R+

m 7−→ E
[∥∥1{V ∈ kn

n Rε
α

}
1−m

∥∥
2

∣∣∣ ∥V ∥∞ ≥ n
kn

] .

Thus, the thresholding can be seen as L1 regularization of the above risk to obtain a more sparse representation.

IV. Anomaly detection

With the estimator M̂, the authors introduce a scoring function Detecting Anomalies among Multivariate EXtremes (DAMEX).

We denote in the following T the rank transform giving V from X, T̂ the empirical version as discussed in III.1, and α(x)
the unique subset of {1, . . . , d} such that x ∈ Rε

α. The underlying idea is more or less statistical hypothesis testing: given a
new extreme point x (where extreme is quantified by T (x) ≥ kn

n ), one can estimate (up to a constant) the probability under
the ”normal” distribution learned by the estimator of lying in a more extreme region in the same direction as x, in the spirit
of a p-value. Formally, define the directional tail region corresponding to x as

Ax :=
{
y
∣∣∣ T (y) ∈ Rε

α(x), ∥T (y)∥∞ ≥ ∥T (x)∥
}
.

Then, we have

P(X ∈ Ax) = P(V ∈ ∥T (x)∥∞ Rε
α(x))

= P(∥V∥∞ ≥ ∥T (x)∥∞)P(V ∈ ∥T (x)∥∞ Rε
α(x) | ∥V∥∞ ≥ ∥T (x)∥∞)

= P(∥U∥∞ ≤ ∥T (x)∥−1
∞ )︸ ︷︷ ︸

=∥T (x)∥−1
∞ (assumption 1)

P(V ∈ ∥T (x)∥∞ Rε
α(x) | ∥V∥∞ ≥ ∥T (x)∥∞)︸ ︷︷ ︸

−−−−−−−−−→
∥T (x)∥∞→∞

ε→0

M(α(x))
µ([0,1]c)

,

which motivates the scoring function

ŝ(x) :=
M̂(α(x))∥∥∥T̂ (x)∥∥∥

∞

. (17)

Note that this score ignores the constant µ([0,1]
c
) since it is unknown, meaning that the interpretation as a probability is

lost, and thus choosing a threshold under which to consider a data point an anomaly is not interpretable as the choice of a
p-value threshold despite the analogy. The choice of such a threshold being application-dependent, the preferred metrics to
evaluate the performance of the algorithm are the ROC AUC and PR AUC. We now use these in a comparative study on
real data.

V. Numerical experiments

The DAMEX pipeline was reimplemented in the supplementary notebook [4], where comparisons are made with iForest [5]
as what is made in [1], but also with Local Outlier Factor (LOF) [6]. The influence of kn and ε are also investigated in more
detail.

We consider the same forestcover dataset as in the paper, obtained from [7]. This dataset has 54 features and contains labels
separating normal and anormal data. One should note that these features are encoded as integers and contain some duplicate
values, meaning the assumptions used to derive bounds do not hold as discussed in section II. Nevertheless, convergence will
still hold as seen in part III.2. We follow the authors’ methodology, being that the training set is only composed of normal

entries, and testing is only made in the extreme region (i.e.
{
x
∣∣∣ ∥∥∥T̂ (x)∥∥∥

∞
≥ kn

}
). Over 10 experiments and for a subset
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of N = 80000 samples, we take 80% of the normal data as training set (n = ⌊0.8N⌋), and we look at the average ROC
AUC & PR AUC over a test set consisting of the extremes present in the remaining 20% of normal data and the anormal
data. We additionally observe the average dimensions of the faces of nonzero estimated mass, i.e. the (uniform) average of{
|α| ,M̂(α) > 0

}
, shortened as AFD (Average Face Dimension). We make the expression of kn vary with fixed ε = 0.01,

p = 0.1 and obtain the results shown in table 1.

DAMEX IsolationForest LocalOutlierFactor
kn AUC ROC AUC PR AFD AUC ROC AUC PR AUC ROC AUC PR

n
1
4 0.503 0.054 8.76 0.947 0.496 0.996 0.961√
n 0.895 0.678 24.6 0.884 0.614 0.994 0.982

n
3
4 0.817 0.773 54.0 0.715 0.498 0.994 0.987

n
1
4 ln(n) 0.939 0.806 26.2 0.911 0.638 0.994 0.981

Table 1: Results on extreme region with varying kn, ε = 0.01

Despite the rather high dimensionality of the problem, LOF very convincingly surpasses both algorithms compared in the
paper. The results show the trade-off in kn: low values lead to underfitting, while too high values mean the considered order
statistics contain non-extreme data and thus fail to recover a sparse representation (high AFD).A good compromise seems

to be reached when taking kn = n
1
4 ln(n) for this dataset, although it is hardly interpretable through (15). Some sparsity

can be observed as highlighted in [1] on other datasets, as for reasonable values of kn, the AFD is less than half of the initial
dimensionality. We also note that despite a suboptimal implementation using python, the run times were acceptable and
not awfully longer than LOF. This highlights the relatively moderate (O(dn ln(n))) complexity of DAMEX. To get a more
adaptative heuristic for the choice of ε, consider the first term of (15). Following the remark made by the authors that if
the angular density is constant one has M ≤ d, and forgetting the logarithmic term for simplicity, let us try to choose ε

minimizing the quantity 1√
εkn

+ d2ε. This yields ε =
√
kn

d
4
3
, which unfortunately goes to +∞ when n → ∞. Nevertheless, we

now evaluate on the same dataset and with our best value of kn = n
1
4 ln(n) but increasing the number N of total data points

considered to see if there is some relevance to this approach.

DAMEX IsolationForest LocalOutlierFactor
N AUC ROC AUC PR AFD AUC ROC AUC PR AUC ROC AUC PR

80000 0.924 0.711 20.9 0.873 0.551 0.994 0.981
150000 0.906 0.639 20.7 0.890 0.600 0.994 0.981

Table 2: Results on extreme region with varying N , kn = n
1
4 ln(n), ε = (kn)

1
3

d
4
3

It would appear such a choice of ε yields decent results on this dataset, although performance decreases with N as expected.
This could potentially be an alternative starting value if ε = 0.01 gives poor performance, in the case where N is not too
large in a high-dimensional setting, but further investigation is beyond the scope of this report.

VI. Conclusion

The paper studied in this report has for main contribution the statistical estimator of the angular measure over relevant
subcones along with convergence bounds, capturing potential sparsity patterns among extreme dependencies so as to reduce
dimensionality and bridge the gap with low-dimensional methods. The second term in said convergence bound (15) could
potentially be made more informational if one were to make additional regularity assumptions, e.g. that it is itself regularly
varying. That could allow for more informed parameter choosing, considering that a cross validation as in section V can be
computationally costly and the explored heuristic choice of ε is unsatisfying from a theoretical standpoint. Although, said
assumptions should be made carefully considering even the initial hypotheses of this paper do not hold for a nonnegligible
class of datasets. Another potential way to expand on the paper’s method would consist in utilizing this dimensional reduction
procedure as a preprocessing step before applying standard algorithms to the exhibited subcones. That is, in the suggested
application to anomaly detection, one could increase the accuracy of the method by not only flagging extreme among cones
of negligible angular mass as anomalies, but additionally allow detection of anomalies within normal, lower dimensional cones
through other methods. Finally, one can see that the choice of representation has high impact on the method: the considered
subcones correspond to sets of nonzero coordinates. Thus, the combination of the paper’s method with different choices of
basis and e.g. manifold representations of data could be investigated.
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[1] Nicolas Goix, Anne Sabourin, and Stephan Clémençon. “Sparse representation of multivariate extremes with applications
to anomaly detection”. In: Journal of Multivariate Analysis 161 (2017), pp. 12–31. issn: 0047-259X. doi: https://
doi . org /10 . 1016 / j. jmva . 2017 . 06. 010. url: https : // www . sciencedirect . com/ science / article / pii/
S0047259X17304062.
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