

FibeRed: Fiberwise Dimensionality Reduction of Topologically Complex Data with Vector Bundles

Mathis Hardion, Mathis Reymond, Chen Yiyuan

1. Background on vector bundles (Chen)

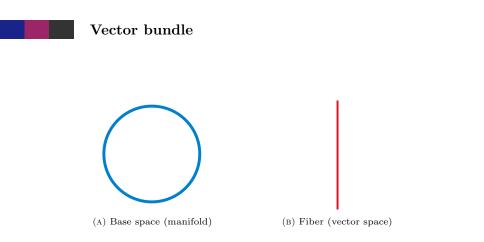
2. Main contributions (Mathis H)

3. Numerical experiments, criticism (Mathis R)

2/18 12

Motivation and Utility

- Aims:preserve the large-scale topology of the data while reducing the dimensionality of the local geometric features.
- How to do this? Find a model takes account to both topological and local geometry.
- Our model is : Vector bundle



Vector bundle = Every point in base space "grows" a vector space(fiber)

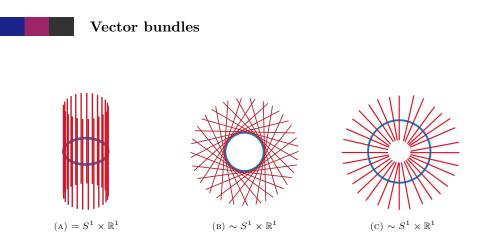
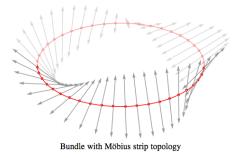


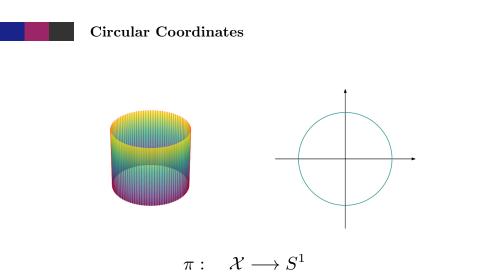
FIGURE 2: Three trivial vector bundles with same base space

Non trivial Vector bundle



 $\sim S^1 \times \mathbb{R}^1$ But can be embedded into $S^1 \times \mathbb{R}^2$

6/18



1. Background on vector bundles (Chen)

2. Main contributions (Mathis H)

3. Numerical experiments, criticism (Mathis R)

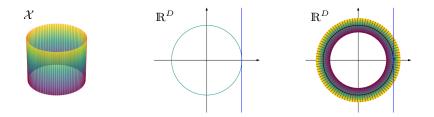
8/18 12/12/

Main contributions (Mathis H)

Problem formulation

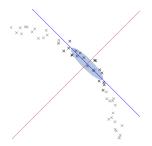
Problem

Given an initial bundle $\pi : \mathcal{X} \to \mathbb{R}^D$ capturing the global topology of \mathcal{X} , refine it into a map $\tilde{\pi} : \mathcal{X} \to \mathbb{R}^D$ which additionally takes into account the local geometry.



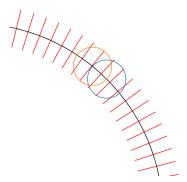
Algorithm: FibeRed

- Input: $\pi, X \subset \mathcal{X}$, distance matrix on X, estimate intrinsic dimensions e of $\mathcal{B} := \pi(\mathcal{X})$ and d of \mathcal{X} . $B := \pi(X)$.
- Build charts:
 - Compute a cover $(U_i)_i$ of B and its nerve, inducing a cover $(X_i)_i := (\pi^{-1}(U_i))_i$ of X.
 - Deduce local coordinates on X, tangent and normal coordinates on B with linear dimensionality reduction.



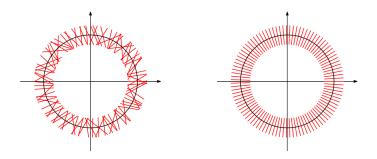
Algorithm: FibeRed

- Estimate the reach from the cover
- Preserve large scale topology:
 - Estimate cocycles for the bundle π and the normal bundle, thus refining the charts to be more consistent on edges of the nerve.



Algorithm: FibeRed

- Refine the embedding to be more faithful to local geometry:
 - Align the fibers of π to be as close as possible to the normal fibers
- Combine the obtained elements to get the final map



- 1. Background on vector bundles (Chen)
- 2. Main contributions (Mathis H)
- 3. Numerical experiments, criticism (Mathis R)

Authors experiment

Inputs :

- Points
- Distance matrix
- \blacksquare Initial map

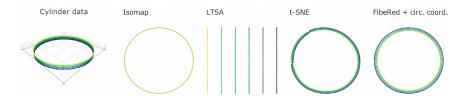


FIGURE 3: Cylinder experiment

Varying distance

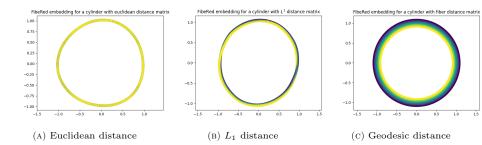
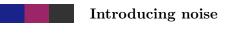


FIGURE 4: Output embedding of a ring for 3 distances

15/18 12/12/2023

Numerical experiments, criticism (Mathis R)



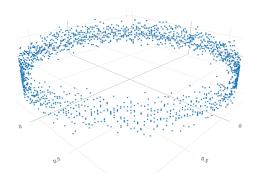


FIGURE 5: Noised cylinder

16/18 12/

2/2023 Nume

Numerical experiments, criticism (Mathis R)

Robustness to noise

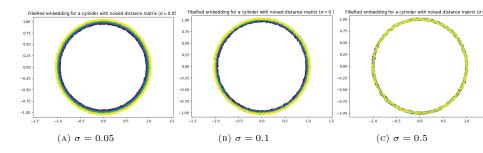


FIGURE 6: Impact of increasingly intense noise on the resulting embedding

Concluding remarks & criticism

- \blacksquare No results on real-life data
- Heavy preprocessing

Appendix

Formal problem

Problem

Given an embedding $\iota : \mathcal{B} \to \mathbb{R}^D$, find a fiberwise isometric embedding $\overline{\iota} : \mathcal{X} \to \mathbb{R}^D$ that extends ι in the sense that $\overline{\iota} \circ s_0 = \iota$, and that is orthogonal to \mathcal{B} , in the sense that $\overline{\iota}(\pi^{-1}(b)) \perp \iota(T_b B)$ for all $b \in \mathcal{B}$.

Property

The above admits a solution if and only if there exists a morphism $\mathcal{X} \to N$ of vector bundles over \mathcal{B} that is an isometry in each fiber. This is also equivalent to the existence of maps $\Phi = \{\Phi_i : U_i \to \bigvee (r, D - e)\}$ such that

 $\Phi_i(b)\Omega_{ij}(b) = \Theta_{ij}(b)\Phi_j(b), Z \text{ for all } i \text{ and } j \text{ and } b \in U_i \cap U_j.$ (1)

Where $\Omega = {\Omega_{ij} : U_i \cap U_j \to O(r)}$ is a cocycle with associated vector bundle π defined as the unique set of maps satisfying

$$\Omega_{ij}(\pi(x)) f_j(x) = f_i(x), \text{ for all } x \in \mathcal{X}_i \cap \mathcal{X}_j, \qquad (2$$

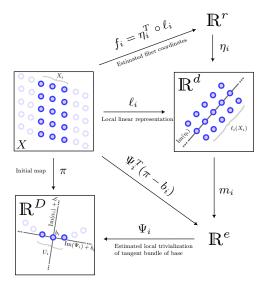
Representation formula

Property

The following formula gives an embedding $\operatorname{disk}(\pi) \to \mathbb{R}^D \text{:}$

 $x \mapsto c \tau \cdot \alpha_i(\pi(x)) \Phi_i(\pi(x)) f_i(x) + \iota(\pi(x)), \text{ for } \pi(x) \in U_i$ (3)

Main constructions



18/18 12/12/2023

Appendix