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I. Introduction

This note discusses the methodology and implications of [1],
and tentative directions of improvement. It is organized as
follows: section II summarizes the main approaches of the pa-
per and how they differ from the methods seen in the course,
section III analyses it through a critical lens, and section IV
gives possible directions of extension.

II. Summary of the paper

The paper addresses the limits of previous NMF methods
for (possibly underdetermined) blind source separation in the
multichannel case, namely that they assumed instantaneous
mixing, required extra work to rebuild the sources and did
not optimally exploit the redundancies between channels.

II.1 Models

The paper considers I convolutive mixtures x̃i(t) of J source
signals s̃j(t) with additive noise b̃i(t). The usual narrow-band
assumption is made, giving us the mixture model (1) in the
STFT domain with F frequency bins and N time frames,
where xf,n ∈ CI , sf,n ∈ CJ and bf,n ∈ CI contains the STFT
coefficients of the corresponding signals at frequency f and
window n, and Af ∈ CI×J is the mixing matrix at frequency
f .

xf,n = Afsf,n + bf,n (1)

The sources are modelled in the frequency domain as a sum
of latent components, i.e. the authors assume the existence
of K ≥ J , (Kj)1≤j≤J partitioning K := {1, . . . ,K}, and non-

negative
(
γk
f,n

)
k∈K,f,n

such that for j ∈ {1, . . . , J},

sjf,n =
∑
k∈K|

ckf,n where ckf,n ∼ Nc

(
0, γk

f,n

)
. (2)

This is different from the approach seen in the NMF Lab
where the sources to separate were directly the components,
whereas here there are J NMF tasks to carry out in order to
separate the components of each source. Said differently, the
NMF method we have used can be seen as a particular case of
this model with J = 1 and where we want to retrieve the com-
ponents ck. The paper assumes the ckf,n to be independant

over k, f and n which gives

sjf,n ∼ Nc

0,
∑
k∈Kj

γk
f,n

 . (3)

With the STFT matrix of source j Sj :=
(
sjf,n

)
f,n

∈ CF×N ,

the power spectrogram |Sj |2 verifies under these assumptions

E
[
|Sj |2

]
=

 ∑
k∈Kj

γk
f,n


f,n

(4)

which motivates the factorization γk
f,n = wf,khk,n with

wf,k, hk,n ∈ R+ allowing us to write the expected power spec-
trogram as a product of nonnegative matrices

E
[
|Sj |2

]
= WjHj (5)

where we denote Wj := (wf,k)f,k∈Kj
∈ R+

F×|Kj | and Hj :=

(hk,n)k∈Kj ,n
∈ R+

|Kj |×N . For these parameters, the Max-

imum Likelihood estimation approach is shown in [2] to be
equivalent to the IS-NMF of the spectrogram. The noise is
assumed to be stationary, gaussian, spatially and temporally
uncorrelated. Under the previous assumptions, the source
model is rewritten

sf,n = Ucf,n (6)

with U :=
(
1Kj

(k)
)
k,j

∈ RJ×K and cf,n :=
(
ckf,n

)
k
∈ CK .

The final model considered is then

xf,n = Åfcf,n + bf,n (7)

with the augmented mixing matrix Åf := AfU ∈ CI×K .
The paper highlights a significant advantage of this model in
comparison with Gaussian Mixture Models, being that the
derived algorithms have complexity linear in the number of
components while it grows combinatorially for GMMs.

II.2 Algorithms

The authors present 2 main algorithms, generalizing the usual
approaches of Expectation Maximization and Multiplicative
Update.
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II.2.1 Expectation Maximization

The first approach is to maximize the exact likelihood of the

parameters with EM. Writing pjf,n := E

[∣∣∣sjf,n∣∣∣2], Σs;f,n =

diag

((
pjf,n

)
j

)
,Σb;f,n = diag

((
σ2
i,f

)
i

)
and Σx;f,n =

AfΣs;f,nA
H
f +Σb;f,n the covariances of the corresponding sig-

nals, the authors derive that ML is equivalent to minimizing
the criterion given by (8), where θ contains all the parameters
of the model.

C1(θ) =
∑

1≤f≤F
1≤n≤N

tr
(
xf,nx

H
f,nΣ

−1
x;f,n

)
+ ln detΣx;f,n (8)

This criterion is invariant under permutation, phase and scal-
ing which creates ambiguities the authors solve by enforcing∑

i |ai,j;f |
2
= 1, a1,j;f ∈ R+ and

∑
f wf,k = 1. The criterion

is then maximized by an EM algorithm adapted for the model.
To help with convergence, the authors propose a ”simulated
annealing” approach consisting in starting with large values of
σ2
i,f and decreasing them gradually at each iteration, as well

as the possibility of adding extra noise at each iteration. The
sources are then reconstructed using Wiener filtering followed
by inverse STFT.

II.2.2 Multiplicative Updates

The second algorithm presented attempts to maximize the
sum of per-channel log-likelihoods, effectively ignoring mu-
tual information between them. This is shown to amount to
minimizing criterion (9).

C2(θ) =
∑

1≤f≤F
1≤n≤N
1≤i≤I

dIS

(
|xi,j |2

∥∥∥v̂i;f,n) (9)

With dIS(.∥.) the IS divergence and

v̂i;f,n =
∑

1≤j≤J

|ai,j;f |2
∑
k∈Kj

wf,khk,n (10)

Where an additive variance term is ignored due to not being
necessary for convergence. v̂i;f,n corresponds to the mixing
of the source variances. The authors then derive from (9)
the gradients which can be split into a difference between two
nonnegative terms, allowing use of the MU scheme. The ex-
pressions are altogether rather similar to what we have derived

in the course, but involve the vectors qi,j =
(
|ai,j;f |2

)
f
∈ RF

+.

The sources are then reconstructed with Wiener filtering and
ISTFT as usual.

II.3 Experiments

The paper uses multiple criteria to assess the quality of the
separation, namely the Signal to Distortion Ratio (SDR) for
the source estimates and the Mixing Error Ratio (MER) for
the mixing system estimate. These quantitative criteria are

not available for all datasets, in which case the criteria were
informal through listening to the separations. Two initial-
ization schemes are proposed. First, a ”perturbed oracle”
method consisting in using a prior method of source separa-
tion and adding noise to get the initial parameters. Second, a
single-channel NMF decomposition followed by K-means clus-
tering of filters to define the partition (Kj). The experiments
made by the authors underline better SDR performance of the
EM algorithm which keeps mutual information between chan-
nels. They compare their methods with the (then) state of the
art and achieve better SDR with the EM algorithm, but not
with the MU scheme. The EM algorithm is however about
4 times slower than the MU one (80min/1000iterations vs
20min/1000iterations). Over the different datasets used, the
paper draws the conclusion that the model is more adapted
to music than to speech.

II.4 Conclusions

The authors present some possible extensions, such as
Bayesian methods for the parameters, clustering methods to
automatically infer the hyperparameters (namely the parti-
tioning of K), or Markov chain methods to smoothen the EM
estimation. They also give new possible directions to explore
which are not addressed by their model, such as nonpoint
sources, nonlinear audio effects and more, which are relevant
in modern professionally produced music.

III. Critical analysis

III.1 Pros

The paper is thorough on both the theoretical and experi-
mental aspects and presents a more general framework than
its predecessors. The presented method of EM manages to
improve the results of previous algorithms and obtain a more
refined decomposition. At the time of making this note it
has been cited 425 times, including recent papers such as [3],
which shows there are expansions on the framework of Multi-
channel NMF (MNMF) to this day. Despite being 13 years
old, this paper is still considered state-of-the-art by some re-
searchers [4]. The authors themselves have furthered MNMF
following [1], for instance in [5], and especially C. Févotte
is still active in the domain of NMF [6]. Overall, this paper
appears to have been quite influential in the field of audio pro-
cessing and particularly source separation and applications.

III.2 Cons

The presented algorithms are still initialization-dependent
and strongly rely on previous methods to get the first pa-
rameter values. In this sense, it may be unfair to compare the
performance of their algorithm with the one used to initialize
it, which did not benefit from such an informed headstart.
The main algorithm retained, that being the EM algorithm,
is also very computationally expensive and while the task is
not concerned with real-time, it might not be suited to widely
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used audio editing software for instance. Some of the evalua-
tions on the last datasets seemed quite subjective, which can
be understood considering the lack of quantitative criteria in
this case, but the personal perception of the authors are not
that strong of an argument in favor of the implemented algo-
rithm in comparison to others.

IV. Extensions

IV.1 Generalizing the source model

A first possibility of improvement would be to account for a
possible correlation of the components ckf,n over k. If we come
back to (2), we could instead write:

E

[∣∣∣sjf,n∣∣∣2] =
∑

k1∈Kj

∑
k2∈Kj

Cov
(
ck1

f,n, c
k2

f,n

)
(11)

Then, factorizing Cov
(
ckf,n, c

k′

f,n

)
= wj

f,k1
ℓjk1,k2

hj
k2,n

, we

could write with Wj ,Lj ,Hj the corresponding matrices:

E
[
|Sj |2

]
= WjLjHj . (12)

Then, the model presented in [1] is a particular case of (12)
with Lj = I|Kj | where Id denotes the identity matrix of order
d. To remain in the NMF framework, we would need to add
the assumption that all the covariances are real and nonneg-
ative. This slightly more general model would lead to 2 NMF
tasks per source: the factorization of the spectrogram into
MjHj where Mj ∈ RF×|Kj |,Hj ∈ R|Kj |×N , then the factor-
ization of Mj into WjLj where Wj ∈ R|Kj |,Lj ∈ R|Kj |×|Kj |.
It would however have the disadvantage to take twice as long
as the already computationally expensive methods presented,
for the sake of a slight relaxation of the model.

IV.2 Generalizing the optimization criterion

The optimization criteria (8), (9) were derived from a Maxi-
mum Likelihood approach leading to the use of the IS diver-
gence, but one could imagine generalizing the algorithms to
other β-divergences, considering they are convex for β ∈ [1, 2]
as opposed to the IS divergence. We give here the generaliza-
tion for the criterion of section II.2.2 for simplicity. With the
same method and notations as in [1] Appendix B, we obtain

∇qi,j
Dβ

(
V
∥∥∥V̂)

=
(
V̂

·(β−1)
i Pj − V̂

·(β−2)
i ·Vi ·Pj

)
1N×1

∇Wj
Dβ

(
V
∥∥∥V̂)

=
I∑

i=1

diag (qi,j)
(
V̂

·(β−1)
i − V̂

·(β−2)
i ·Vi

)
HT

j

∇Hj
Dβ

(
V
∥∥∥V̂)

=

I∑
i=1

(diag (qi,j)Hj)
T
(
V̂

·(β−1)
i − V̂

·(β−2)
i ·Vi

)
which allows generalization of the MU rules.
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