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Introduction

Optimal transport can be costly in high dimension: slicing to reduce
complexity as it has a closed form in 1D [12]

Studied paper [13]: generalize the slicing approach to any distance and more
general slices using GRT

Link a particular case to MMDs, derive gradient flows following [2].
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Generalized Sliced Probability Metrics (GSPMs)

Definition

ξ a distance on P(R), F = {fθ ∈ Cb(X ), θ ∈ Ω} ⊂ Cb(X ) s.t. the GRT is
invertible. (r-)GSPM:

∀µ, ν ∈ P(Rd), ζF (µ, ν) :=

(∫
Ω

ξ (fθ♯µ, fθ♯ν)
r dθ

) 1
r

.

Proposition (link with MMDs)

For pdfs p, q: ξ(p, q) := ∥A(p− q)∥2, p̂, q̂ empirical densities smoothened by
RBF ϕσ, then empirical GSPM ↔ empirical MMD with kernel

k : (x, y) 7→
∫
Ω

⟨Aϕσ(· − fθ(y)), Aϕσ(· − fθ(x))⟩ dθ
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Behaviors
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GSPM-MMD gradient flows

Follows the work of [2] on MMD flows, noisy Euler-Maruyama scheme:

Xn+1 = Xn + ηv(Xn + βnUn, νn), (1)

v(x, ν) = −∇x

(∫
k(·, x)dµ−

∫
k(·, x)dν

)
Theorem: Convergence of GSPM-MMD gradient flows

Under regularity assumptions, and if
∑∞

i=0 β
2
i = ∞ , then (1) verifies

ζ(νn, µ) ≤ ζ(νn, µ)e
−2λ2η(1−3ηL)

∑n
i=0 β2

i . (2)
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Flow numerics
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Flow numerics
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Extensions

Idea: modify the RBF radius σ over iterations
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Criticisms

Convergence bound becomes untractable in general settings

Initial goal of reducing complexity somewhat forgotten: MMD with kernel that
must be estimated via MC

Hyperparameter tuning may be complex

9/10 18/01/2024 Generalized Sliced Distances for Probability Distributions



Conclusion

The presented method allows to lift a 1D probability distance to an arbitrary
dimension, gradient flows in MMD case

Varying RBF radius over iterations seems useful, convergence may be provable

A link with dual norms could be investigated since many popular metrics can
be understood under that framework [9]
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Appendix



GSPM behavior on heavy tails
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Plateau: explanation

Proposition

A = id, µ, ν with densities bounded above by respective constants Bµ, Bν .
Then,

ζ2(µ, ν) ≤ Leb (Ω)
(
B2

µ +B2
ν

)
. (3)
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Flow numerics
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Flow numerics
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Flow numerics
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