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Abstract

Optimal transport (OT) has become a cornerstone of machine learning, and is widely used in gen-
erative modeling. Neural networks are an increasingly popular way of scaling OT to large and
high-dimensional data. The paper studied in this report introduces a novel way to do so in the con-
text of weak OT, by reformulating the dual problem appropriately. This report discusses the interest
of (weak) OT in generative modeling, the advantages and disadvantages of the proposed method, and
provides avenues for further reasearch. Experiments are performed on synthetic 2D datasets and on
MNIST/KMNIST. A link between weak OT and entropic OT is highlighted and a possible adaption
of the paper’s method to that case is proposed. A theoretical result showing that appropriate weak
costs tend to Monge’s OT is shown, an interpretation of weak OT as a ”stochastic Monge” problem
is provided and a further generalization as ”stochastic Kantorovitch” and its dual are derived.

I. Introduction

This report discusses the main contributions of [18], their strengths, shortcomings and possible exten-
sions. Optimal Transport (OT) has recently gained a lot of traction in computational mathematics
[28, 25], as it provides a distance between probability measures enjoying many desirable properties
and notably faithfulness to the ground metric. In machine learning and more specifically generative
modeling, the majority of methods use estimates of the Wasserstein distance as loss functions to train
models, with [3, 29] introducing the use of neural networks (NNs) to do so on large-scale data, and
many works extending on the idea ([13, 21, 9, 11, 24, 10], etc.). More recently, multiple articles [8,
27, 5, 22] investigated the use of the optimal transport plan itself as a generator, with promising
results. However, those have key limitations: [27, 5] only apply to the quadratic cost, and assume
the existence of a Monge/Brenier map, [8] requires high dimensional sampling, and [22] struggles to
scale to large/complex datasets. Moreover, methods using NNs to compute transport maps can be
complex to train, see [19] for a review. Therefore, the studied paper [18] aims at generalizing the
approach to weak OT (WOT) costs [12] and obtain a scalable procedure.

The resulting approach, while not a WGAN, still ties with the methodology seen in session 2 of the
course: it uses the dual formulation of (weak) OT, C-transform and learns both the dual variable
(which can be seen as a ’discriminator’ but does not need to be 1-Lipschitz like in WGAN) and the
OT plan, which is used as conditional ’generator’ but solves OT which is not the case of the WGAN.
It also uses Stochastic Gradient Ascent-Descent (SGAD), but WGAN solves an inf sup problem where
[18] solves a sup inf problem instead, which is different in general.

This report is organized as follows: section II introduces OT, WOT and discusses their relevance
within the generative modeling context, section III adresses the paper’s main contributions under
a critical light, section IV challenges the method against both synthetic and real data to assert its
strengths and shortcomings, and section V provides extra theoretical results and potential directions
of further research.
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II. OT and WOT in generative modeling

For a Polish space X , P(X ) denotes the set of probability measures on X . We take X ,Y ,Z Polish
spaces and for α ∈ P(X ), β ∈ P(Y) we denote the set of couplings (i.e. measures with marginals α, β)
by Π(α, β) := {π ∈ P(X × Y) | π(· × Y) = α, π(X × ·) = β}. We may also denote the two marginals
of π ∈ P(X × Y) by π1, π2 respectively. For a map T , the pushforward operator is denoted by T♯.
For a cost function c : X × Y −→ R, we recall Monge’s OT formulation [23]:

M(α, β) := inf
T♯α=β

∫
X
c(x, T (x))dα(x), (1)

which finds an OT map T : X −→ Y which transfers mass with minimal cost. Within our context,
we are not interested in the cost by itself, but rather the optimal map. Having access to it can be
useful in problems such as unpaired translation/style transfer or inpainting, since it moves its input
to a ’close’ point in the target distribution’s support, which makes it faithful to the original image
(see e.g. [27]). However, such a map may not exist, and thus (1) was later relaxed by Kantorovitch
[16] to allow splitting of mass and guarantee existence of minimizers (see e.g. [25, Remark 2.13]):

K(α, β) := inf
π∈Π(α,β)

∫
X×Y

c(x, y)dπ(x, y). (2)

If the optimal plan is of the form (Id, T )♯α, then we recover (1). Even when a Monge map does
not exist, one can use the OT plan as substitute: instead of a deterministic map, one can use the
stochastic map

T̃ :

∣∣∣∣ X −→ P(Y)
x 7−→ π(·|x)

where π(·|x) ∈ P(Y) is the distribution conditional to x. Then, for an input x, one can sample
T̃ (x) ∈ P(Y), which also allows for more sample diversity than a deterministic map. If needed, one
can also compute/estimate T̄ : x 7→

∫
Y ydπ(y|x) as a deterministic map.

A further generalization of OT was recently proposed in [12], which considers a cost not between
coupled points but directly between a point and the distribution of points coupled to it, i.e. for
C : X × P(Y) → R (named weak cost) the weak OT (WOT) is defined as

T(α, β) := inf
π∈Π(α,β)

∫
X
C(x, π(·|x))dα(x). (3)

Note that (2) is recovered when C is the ”strong” cost C(x, µ) =
∫
Y c(x, y)dµ(y), since for π ∈ Π(α, β),

dπ(x, y) = dπ(y|x)dα(x). The added flexibility of WOT in the case of interest where π(·|x) will be
sampled is that one can add regularization terms to enforce desired behaviors for this generator
directly through the definition of C. For instance, [18] suggests the γ-weak cost defined as

Cγ(x, µ) :=
1

2

∫
Y
∥x− y∥2 dµ(y)− γ

2
Var (µ) , (4)

which tends to make the generator have higher variance and thus more sample diversity.

In order to solve OT problems, many methods rely on their dual formulation which often enjoy
simpler optimization procedures (we once again refer to [19] for a review). The duality of WOT was
studied by [30] which shows that under mild conditions, the dual form of (3) is

T(α, β) = sup
f∈Cb,s(Y)

(∫
X
fC(x)dα(x) +

∫
Y
f(y)dβ(y)

)
, (5)

where Cb,s(Y) denotes the set of real-valued, continuous, upper bounded, not very rapidly growing
functions on Y , and the weak C-transform of f is defined as

fC :

∣∣∣∣∣∣
X −→ R

x 7−→ inf
µ∈P(Y)

C(x, µ)−
∫
Y
f(y)dµ(y).

(6)

Note that with the strong cost, one recovers the Kantorovitch duality [31, Section 5].
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III. Contributions of the paper, strengths and shortcomings

The paper’s main contributions consists in reformulating the dual WOT (5), and essentially recover
some generalization of noise outsourcing [15, Theorem 5.10] allowing for simpler representation of
the plan π, enabling derivation of a maximin formulation which is then solved by approximating
the variables with NNs, which are shown to be universal approximators for plans. The paper places
itself in the case where X ,Y are subsets of euclidean spaces, and use an atomless distribution ζ on
another subset Z of an euclidean space, which we refer to as outsourcing distribution. With such a
distribution, they show the following reformulation of the weak C-transform (6) as a consequence of
[28, Cor 1.29]:

∀x, fC(x) = inf
t:Z→Y

C(x, t♯ζ)−
∫
Z
f(t(z))dζ(z). (7)

This allows the authors to derive the following reformulation of dual WOT:

T(α, β) = sup
f∈Cb,s(Y)

(∫
Y
f(y)dβ(y) + inf

T :X×Z→Y

∫
X

(
C (x, T (x, ·)♯ζ)−

∫
Z
f(T (x, z))dζ(z)

)
dα(x)

)
.

(8)
The intuition is that T (x, ·)♯ζ corresponds to the conditional π(·|x), and thus we recover noise out-
sourcing in the sense that the map T implicitly represents π. And indeed, [18] shows that when T
realizes an OT plan, it minimizes the inner term in (8). The converse is also shown to be true when
the weak cost is strictly convex in its second argument.

This formulation of WOT has major practical advantages: first, the outsourcing distribution can be
any atomless distribution over a euclidean space of any dimension, meaning one can choose it to be
easy to sample and tune its dimensionality based on the complexity of the task at hand. Second, the
representation of π through a map allows one to directly parametrize and optimize it, i.e. the loss
directly relates to the plan, rather than indirectly through the dual variables in the case of entropic
OT [8]. However, the formulation is a maximin problem, which is proposed to be solved with a
Stochastic Gradient Ascent Descent (SGAD), an algorithm which can be very slow in practice (cf.
section IV), and for which convergence rates are not so straightforward to obtain (see e.g. [4] for
recent results). Additionally, the main criticism of entropic OT methods presented by the paper is
that they recover a biased plan, however the use of the γ-weak cost also adds a bias by enforcing
higher variance.

Nevertheless, this straightforward objective yields favorable results for one-to-many translation by
necessitating only a single hyperparameter γ, compared to other approaches such as Aug-CycleGAN
[1] and M-UNIT [14], which typically require multiple hyperparameters.

IV. Experiments

IV.1 Toy 2D multimodal problem

We first study the method on 2D (X = Y = R2) synthetic data, where the input distribution is dis-
crete i.e. 1

n

∑n
i=1 δxi

, and the target is made of uniform circles i.e. 1
m

∑m
j=1(yj+r(cos(2π·), sin(2π·)))♯U [0, 1].

The cost used is the square distance to the mean, i.e. C(x, µ) :=
∥∥x−

∫
X ydµ(y)

∥∥2. We thus expect
to recover the centers of the different circles. The results are shown figure 1, where we see that
the methods does not recover all modes, despite long training. It appears the method may struggle
in multimodal cases, as is often the case for sampling algorithms. Code was adapted from the one
provided by [18].
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Figure 1: Toy 2D example with discrete input and multimodal target. Note how the algorithm fails
to recover the upper right mode.

IV.2 Optimal Transport between MNIST and KMNIST

In our next experiment, we decided to compute optimal transport between the datasets MNIST
[20] and KMNIST (Kuzushiji-MNIST) [6], using the methodology of the paper. To accomplish this
task, The stochastic map T was approximated using a U-Net neural network architecture and the
potential f was approximated using a convolutional neural network. The training process was a
modified version of the training setting proposed by the paper, aiming to achieve faster results on
what we assume to be a simpler task. More details can be found in appendix C.

(a) Random Images (b) Random Test Images

(c) Sample from the KMNIST Dataset

Figure 2: Result of the experiment: In Figure 2a and 2b, the first row corresponds to the input x
given to the model T , and the next four rows correspond to the output for different samples z.

Throughout the training process, we observed distinct phases of development in the model T . Initially,
our model was independent from z (non-stochastic), likely influenced by the dynamic weak cost
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(appendix C) suggested by the paper. The model also appeared to approximate the identity function.
As training progressed, the dependence on z began to manifest, and T gradually diverged from the
identity. By the end of training, it became capable of generating realistic-looking hiragana characters
from a MNIST image. However, it is worth noting that the model also frequently generated images
with a hiragana-like structure that did not correspond to any real hiragana, which might be attributed
to insufficient training.

V. Further research

V.1 Entropic Optimal Transport as WOT

Entropic Optimal Transport (EOT) has become a popular alternative to OT due to lower compu-
tational costs thanks to Sinkhorn’s algorithm [7]. It consists in regularizing the OT cost with an
entropic term, i.e. it is defined as

Sε(α, β) = inf
π∈Π(α,β)

(∫
X×Y

c(x, y)dπ(x, y) + εKL (π||α⊗ β)

)
, (9)

where KL (π||ρ) :=
∫
X×Y log

(
dπ
dρ (x, y)

)
dπ(x, y) if π is absolutely continuous w.r.t. ρ (denoted π ≪ ρ)

and +∞ otherwise. We now show that WOT can also recover EOT when we fix β, for the cost

Cε(x, µ) :=

∫
Y
c(x, y)dµ(y) + εKL (µ||β) . (10)

Indeed, since any π ∈ Π(α, β) such that the cost in (9) is finite verifies π ≪ α ⊗ β, it also holds
that for any x ∈ X , π(·|x) ≪ β, as one can easily obtain its Radon-Nikodym derivative: dπ(y|x) =
dπ(x,y)
d(α⊗β)dβ(y). Thus, one has

inf
π∈Π(α,β)

∫
X
Cε(x, π(·|x))dα(x) = inf

π∈Π(α,β)

∫
X

∫
Y

(
c(x, y) + ε log

(
dπ(y|x)

dβ

))
dπ(y|x)dα(x)

= inf
π∈Π(α,β)

∫
X×Y

(
c(x, y) + ε log

(
dπ(x, y)

d(α⊗ β)

))
dπ(x, y)

= Sε(α, β).

From a practical perspective, the consideration of EOT as WOT with the cost Cε will not yield any
computational advantages since the first term in (10) is estimated using Monte Carlo just as in [18],
and the second term may be more complex to estimate, requiring methods such as k-nearest neigbors
density estimation [32]. However, the regularization term may help enforcing that generated samples
from π(·|x) appear ’likely’ to be in the target distribution, since it tends to reduce KL (π(·|x)||β).
An extra challenge is that one would need to enforce the support of π(·|x) to be close to that of β at
the start, so that the estimated KL does not diverge and provide unstable behaviors. This could be
achieved by initially considering the strong cost by itself and adding the regularization after enough
training steps.

V.2 Approximate Monge with WOT

The γ-weak cost (4) proposed by [18] allows to increase the generator’s variance and thus sample
diversity as discussed previously. Now consider the opposite: by switching the sign in front of γ,
one instead enforces lower variance of the generator, and intuitively for large γ, on average over x,
π(·|x) will become almost deterministic i.e. close to some dirac mass δT (x). Thus, we could expect to
recover some approximation of a Monge map. More formally, we at least have the following result.

Proposition 1. For some nonnegative cost c on X × Y , define

C̃γ : x, µ 7→
∫
Y
c(x, y)dµ(y) + γVar (µ) . (11)

Then, it holds that

inf
π∈Π(α,β)

lim
γ→+∞

∫
X
C̃γ(x, π(·|x))dα(x) = inf

T♯α=β

∫
X
c(x, T (x))dα(x). (12)

5



Note that the limit in (12) is well defined since the considered quantity is nondecreasing in γ, and
also that the infimum on the right hand side may be +∞ i.e. no assumption is made about the
existence of a Monge map. The proof is provided in appendix A. The main limitations of this result
are that first, we would prefer the inf and lim to be swapped, and second, in our case of interest we
would additionally like convergence of the OT plan to some (Id, T ∗)♯α in the case where an OT map
T ∗ exists. That way, one would have guarantees about the optimization procedure proposed in [18].
Further research could therefore try to extend this result and obtain these properties. The first one
could most likely be achieved by ensuring the total cost is lower semi-continuous with respect to π
in an appropriate sense, while the second one may prove more challenging or potentially impossible
since the cost C̃γ is now concave due to the concavity of the variance operator, meaning a minimizer
would not be unique. We provide a toy illustration in appendix B, where convergence is nevertheless
still observed, and the resulting map is close to deterministic as expected.

V.3 WOT as ”stochastic Monge”

By comparing (1) and (3), one can see they are quite similar: the deterministic map T : X → Y
is replaced with the stochastic map T : X → P(Y) with T : x 7→ Tx := π(·|x). The constraint
T♯α = β is replaced by π ∈ Π(α, β), which can be reformulated as follows:{

π1 = α
π2 = β

⇐⇒
{

π1 = α
∀A,

∫
X π(A|x)dπ1(x) = β(A)

⇐⇒
{

π1 = α∫
X Tx(A)dα(x) = β(A)

⇐⇒
{

π1 = α∫
P(Y)

µ(A)d(T♯α)(µ) = β(A)

Where T♯α ∈ P(P(Y)) (and P(Y) can be made into a Polish space, see [2, Remark 7.1.7]). Thus,
defining for Φ ∈ P(P(Y)) its expectation E [Φ] ∈ P(Y) as the measure such that

∀A,E [Φ] (A) :=

∫
P(Y)

µ(A)dΦ(µ), (13)

the constraint reads {
π1 = α
π2 = β

⇐⇒
{

π1 = α
E [T♯α] = β

(14)

Therefore, every measurable stochastic map T : X → P(Y) verifying E [T♯α] = β is uniquely linked
with a coupling π ∈ Π(α, β) defined by its first marginal π1 := α and its conditional distribution
π(·|x) := Tx. We have thus shown that WOT can be reformulated as what we refer to as ”stochastic
Monge problem”:

Proposition 2. The following equality holds:

T(α, β) = inf
E[T♯α]=β

∫
X
C(x,Tx)dα(x). (15)

where the infimum is taken over measurable T : X → P(Y) verifying E [T♯α] = β.

With this result, the next obvious step is to apply the Kantorovitch relaxation to (15) considering it
may be nonconvex for general costs (like (10) or (11)). One can first identify x ∈ X with δx ∈ P(X ),
which can be done by replacing C(x, ν) with C̃(δx, ν) :=

∫
X C(x̃, ν)dδx(x̃), extended naturally as

C̃(µ, ν) =
∫
X C(x, ν)dµ(x), but we next consider a general cost C : P(X )× P(Y) → R. Then, we

would obtain the relaxation which we refer to as ”stochastic Kantorovitch problem”:

Definition 1. The stochastic Kantorovitch cost between two probability measures α, β is defined as

SK(α, β) := inf
E[Γ1]=α
E[Γ2]=β

∫
P(X )×P(Y)

C(µ, ν)dΓ(µ, ν) (16)

where Γ denotes an element of P(P(X )× P(Y)) and Γ1,Γ2 its respective marginals.
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Note that if the optimal coupling is of the form (δ,T )♯α with δ : x 7→ δx, we recover the stochastic
Monge OT (15). Additionally, as in (2), the fact that Γ is a probability measure is implied by the
marginal constraints: if E [Γ1] = α, one has∫

P(X )

1dΓ1(µ) =

∫
P(X )

µ(X )dΓ1(µ)

= E [Γ1] (X )

= α(X )

= 1,

and therefore

Γ(P(X )× P(Y)) = Γ1(P(X ))

= 1.

Denoting M(P(X )× P(Y)) the set of nonnegative measures over P(X )× P(Y), one can therefore
take the infimum over Γ ∈ M(P(X )× P(Y)) verifying the marginal constraints. This allows one
to define duality the same as for (2): denoting for a function f and measure µ ⟨f, µ⟩ :=

∫
fdµ for

notational convenience, and assuming duality holds i.e. sup and inf can be swapped, one has

SK(α, β) = inf
Γ

sup
f,g

⟨C,Γ⟩+ (⟨f, α⟩ − ⟨f,E [Γ1]⟩) + (⟨g, β⟩ − ⟨g,E [Γ2]⟩)

= sup
f,g

⟨f, α⟩+ ⟨g, β⟩+ inf
Γ

⟨C,Γ⟩ − ⟨f,E [Γ1]⟩ − ⟨g,E [Γ2]⟩

Where the infimum is over Γ ∈ M(P(X )× P(Y)) and f, g continuous bounded functions on X , Y
respectively. For such functions, the definition (13) is equivalent to

⟨f,E [Γ1]⟩ =
∫
P(X )

∫
X
f(x)dµ(x)dΓ1(µ)

=

∫
P(X )

⟨f, µ⟩ dΓ1(µ),

and the same can be said for ⟨g,E [Γ2]⟩, whence

inf
Γ

⟨C,Γ⟩ − ⟨f,E [Γ1]⟩ − ⟨g,E [Γ2]⟩ = inf
Γ

∫
P(X )×P(Y)

(C(µ, ν)− ⟨f, µ⟩ − ⟨g, ν⟩)dΓ(µ, ν)

=

{
0 if ⟨f, ·⟩ ⊕ ⟨g, ·⟩ ≤ C
−∞ otherwise

Where we denote ⟨f, ·⟩ ⊕ ⟨g, ·⟩ : (µ, ν) 7→ ⟨f, µ⟩ + ⟨g, ν⟩. Finally, the dual formulation of (16) reads
as follows.

Proposition 3. Assuming duality holds, the dual Stochastic Kantorovitch reads

SK(α, β) = inf
⟨f,·⟩⊕⟨g,·⟩≤C

⟨f, α⟩+ ⟨g, β⟩ . (17)

Further research would study under which circumstances duality holds, and possibly find a reformu-
lation using a generalized C-transform of sorts, although that may prove challenging due to the form
of the constraints. If such a formulation is possible, it may be feasible to extend [18]’s method to the
stochastic Kantorovitch cost, which could allow computation of more general transport plans.
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Appendix

A. Proof of proposition 1

First, observe that for x ∈ X , π ∈ Π(α, β),

C̃γ(x, π(·|x)) −−−−−→
γ→+∞

{
c(x, T (x)) if π(·|x) = δT (x) for some T (x) ∈ Y
+∞ otherwise

since for a probability measure µ, Var (µ) = 0 ⇐⇒ ∃y, µ = δy. Therefore, by Beppo-Levi’s lemma
(the sequence is increasing in γ and nonnegative), one has∫

X
C̃γ(x, π(·|x)) −−−−−→

γ→+∞

{ ∫
X c(x, T (x))dα(x) if π(·|x) = δT (x) α-a.e. for some T : X −→ Y
+∞ otherwise.

(18)
Notice that if π(·|x) = δT (x) α-a.e., then T (x) =

∫
Y ydπ(y|x) and therefore T is measurable (at least

when restricted to a set of probability 1 under α). Additionally in that case, for any continuous
bounded f : Y −→ R, one has∫

Y
f(y)dβ(y) =

∫
Y×X

f(y)dπ(y|x)dα(x)

=

∫
X
f(T (x))dα(x)

i.e. T♯α = β. Conversely, if there is some measurable T such that T♯α = β, the coupling π defined
by its first marginal π1 = α and conditional π(·|x) := δT (x) does indeed verify π ∈ Π(α, β) using the

9

https://books.google.fr/books?id=IG7CGwAACAAJ
https://books.google.fr/books?id=IG7CGwAACAAJ
https://openreview.net/forum?id=B1hYRMbCW
https://openreview.net/forum?id=B1hYRMbCW
https://arxiv.org/abs/1505.04597
https://openreview.net/forum?id=5JdLZg346Lw
https://openreview.net/forum?id=5JdLZg346Lw
https://doi.org/10.1007/978-3-319-20828-2
https://openreview.net/forum?id=B1zlp1bRW
https://openreview.net/forum?id=B1zlp1bRW
https://doi.org/10.1007/s00526-019-1624-y
https://books.google.fr/books?id=hV8o5R7_5tkC
https://books.google.fr/books?id=hV8o5R7_5tkC
https://doi.org/10.1109/TIT.2009.2016060


same computation: for any continuous bounded f ,∫
Y
f(y)dπ2(y) =

∫
X×Y

f(y)dπ(x, y)

=

∫
X

∫
Y
f(y)dπ(y|x)dα(x)

=

∫
X
f(T (x))dα(x)

=

∫
Y
f(y)dβ(y).

As a result, the (possibly empty) set of πs for which the limiting cost in (18) is finite is exactly
described by the set of measurable maps T verifying T♯α = β, hence proving (12) i.e. propostion 1.

B. Toy illustration of proposition 1

(a) Cγ , γ = 1

(b) C̃γ , γ = 10

Figure 3: Toy experiment illustrating the difference between the γ-weak cost enforcing higher variance
3a and our alternative definition penalizing it instead 3b. One can see that as expected, we recover
a basically deterministic map in the latter case.
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C. Training Details for experiment IV.2

Pre-processing. We rescale the images to have values between [−1, 1].

Neural networks. We employ a straightforward CNN architecture for the potential function f , the
details of which are available in the code provided. We use UNet [26] as the stochastic transport map
T (x, z). The noise z is simply an additional input channel , i.e., the dimension of the noise equals
the image size (28× 28). We use high-dimensional Gaussian noise with axis-wise σ = 0.1.

Optimization. We utilize the Adam optimizer [17] with default beta values for both Tθ and fω. The
learning rate is set to lr = 10−4, and the batch size is |X| = 64. We sample |Zx| = 4 noise samples
per each image x in batch. We conduct kT = 10 inner iterations (iterations of the T optimization
step per optimization step of f). The model is trained for approximately 10,000 epochs.

Dynamic weak cost We train the algorithm with the gradually changing γ of the γ-weak cost.
Starting from γ = 0, we linearly increase it to the desired value 2

3 during 3K first iterations of fω.
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