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Introduction

OT as loss faithful to the ground metric, approximated with NNs: widely used
in generative modeling since WGAN and extensions (rich literature: [3, 30, 14,
22, 9, 12, 25, 10]...)

More recently, OT map/plan itself as generator

Previous works still have limitations:
• Restrictive assumptions on existence of Monge/Brenier maps
• High dimensional sampling with diffusion models
• Difficulties to scale
• Often difficult to train

Studied paper: generalization to WOT, try to obtain scaleable procedure

2/22 12/12/2023 Introduction



Plan

1. Introduction

2. OT and WOT in generative modeling

3. Contributions of the paper, strengths and shortcomings

4. Experiments

5. Further research

6. Summary

2/22 12/12/2023 OT and WOT in generative modeling



Monge/Kantorovitch OT

Definition

M(α, β) := inf
T♯α=β

∫
X
c(x, T (x))dα(x)

OT map T : unpaired translation/style transfer, inpainting, faithful to the
original image.

Problem: T may not exist.

Definition

K(α, β) := inf
π∈Π(α,β)

∫
X×Y

c(x, y)dπ(x, y).

Instead of using the deterministic T (x), sample OT plan π(·|x).

use the average
∫
Y ydπ(y|x) if a deterministic map is needed.
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Weak OT

Definition

For a ”weak” cost C : X × P(Y) → R,

T(α, β) := inf
π∈Π(α,β)

∫
X
C(x, π(·|x))dα(x).

Recovers Kantorovitch for C(x, µ) =
∫
Y c(x, y)dµ(y).

Added flexibility: directly regularize the generator π(·|x) through C.

e.g. γ-weak cost:

Cγ(x, µ) :=
1

2

∫
Y
∥x− y∥2 dµ(y)− γ

2
Var (µ) .
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Dual WOT

Dual OT problems usually enjoy simpler optimization procedures

Proposition

Under appropriate assumptions,

T(α, β) = sup
f∈Cb,s(Y)

(∫
X
fC(x)dα(x) +

∫
Y
f(y)dβ(y)

)
,

where

∀x ∈ X , fC(x) = inf
µ∈P(Y)

C(x, µ)−
∫
Y
f(y)dµ(y).
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Contribution of the paper

Proposition

We consider atomless distribution ζ on Z ”the outsourcing distribution”.

The dual WOT problem can be rewritten as

T(α, β) = sup
f∈Cb,s(Y)

inf
T :X×Z→Y

Lα,β(f, T )

where

Lα,β(f, T ) =

∫
Y
f(y)dβ(y)+

∫
X

(
C (x, T (x, ·)♯ζ)−

∫
Z
f(T (x, z))dζ(z)

)
dα(x).
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Contribution of the paper

Figure 1: Extracted from the paper: Stochastic map illustration
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Intuition

Proposition

Dual WOT reformulation

T(α, β) = sup
f∈Cb,s(Y)

inf
T :X×Z→Y

Lα,β(f, T )

where

Lα,β(f, T ) =

∫
Y
f(y)dβ(y)+

∫
X

(
C (x, T (x, ·)♯ζ)−

∫
Z
f(T (x, z))dζ(z)

)
dα(x).

T (x, ·)♯ζ corresponds to the conditional π(·|x)
The paper shows that neural networks are universal approximators of
stochastic transport maps
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Strenghts/Limitations

Proposition

Dual WOT reformulation

T(α, β) = sup
f∈Cb,s(Y)

inf
T :X×Z→Y

Lα,β(f, T )

where

Lα,β(f, T ) =

∫
Y
f(y)dβ(y)+

∫
X

(
C (x, T (x, ·)♯ζ)−

∫
Z
f(T (x, z))dζ(z)

)
dα(x).

T is easily interpretable.

Freedom in the choice of ζ (and Z).

Easy to sample

Few hyperparameters

- Maximin problem: slow to optimize and potentially unstable

- Added biais with γ-weak cost.
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Toy 2D Dataset

Definition

The distribution on X is 1
n

∑n
i=1 δxi

The distribution on Y is made of m uniform circles of center yi and
radius r.

ζ ∼ N (0, 0.01 I4)

C(x, µ) :=
∥∥x−

∫
X ydµ(y)

∥∥2
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Toy 2D Dataset

Figure 2: Toy 2D example with discrete input and multimodal target. Note how the
algorithm fails to recover the upper right mode.
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MNIST to KMNIST

(a) Sample from the MNIST Dataset

(b) Sample from the KMNIST Dataset
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MNIST to KMNIST: Training

Figure 4: Evolution of the output during training (the intervals are irregular)
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MNIST to KMNIST

(a) Random Images (b) Random Test Images

(c) Sample from the KMNIST Dataset
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Entropic OT as WOT

Definition

Entropic OT:

Sε(α, β) = inf
π∈Π(α,β)

(∫
X×Y

c(x, y)dπ(x, y) + εKL (π||α⊗ β)

)

Proposition

Sε(α, β) = Tε(α, β),

with Tε the WOT for the cost

Cε(x, µ) :=

∫
Y
c(x, y)dµ(y) + εKL (µ||β) .
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Entropic OT as WOT

Cε(x, µ) :=

∫
Y
c(x, y)dµ(y) + εKL (µ||β) .

With regards to the optimization procedure of [19], no computational
advantage...

However, regularization may enforce samples to appear ’likely’ from β

The challenge to avoid divergence of the KL to +∞ could be solved by adding
the regularization mid-way
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Approximate Monge with WOT

Proposition

Define

C̃γ : x, µ 7→
∫
Y
c(x, y)dµ(y) + γVar (µ) ,

Then, it holds that

inf
π∈Π(α,β)

lim
γ→+∞

∫
X
C̃γ(x, π(·|x))dα(x) = inf

T♯α=β

∫
X
c(x, T (x))dα(x). (1)

Future work could:

• Swap inf and lim under appropriate conditions

• Study convergence of arginf if possible (C̃γ is concave)

Convergence is observed on a toy dataset (appendix)
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WOT as ”stochastic Monge”

M(α, β) := inf
T♯α=β

∫
X
c(x, T (x))dα(x), (2)

T(α, β) := inf
π∈Π(α,β)

∫
X
C(x, π(·|x))dα(x). (3)

T replaced by T :

∣∣∣∣ X −→ P(Y)
x 7−→ Tx := π(·|x)

T♯α = β replaced by

π ∈ Π(α, β)

⇐⇒
{

π1 = α∫
X Tx(A)dα(x) = β(A)

⇐⇒
{

π1 = α∫
P(Y)

µ(A)d(T♯α)(µ) = β(A)

⇐⇒
{

π1 = α
E [T♯α] = β
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WOT as ”stochastic Monge”

Proposition

The following equality holds:

T(α, β) = inf
E[T♯α]=β

∫
X
C(x,Tx)dα(x) =: SM(α, β). (4)

Since WOT may not be convex for nonconvex costs like the previous case, this
motivates the Kantorovitch relaxation

19/22 12/12/2023 Further research



WOT as ”stochastic Monge”

Proposition

The following equality holds:

T(α, β) = inf
E[T♯α]=β

∫
X
C(x,Tx)dα(x) =: SM(α, β). (4)

Since WOT may not be convex for nonconvex costs like the previous case, this
motivates the Kantorovitch relaxation

19/22 12/12/2023 Further research



Kantorovitch relaxation

Definition

The stochastic Kantorovitch cost between two probability measures α, β is
defined as

SK(α, β) := inf
E[Γ1]=α
E[Γ2]=β

∫
P(X )×P(Y)

C(µ, ν)dΓ(µ, ν) (5)

where Γ denotes an element of P(P(X )× P(Y)) and Γ1,Γ2 its respective
marginals.

SK is a convex and symmetric optimization problem, recovers SM when
Γ = (δ,T )♯α

A dual can be derived similary to the Kantorovitch duality
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Kantorovitch relaxation

Proposition

Assuming duality holds, the dual Stochastic Kantorovitch reads

SK(α, β) = inf
⟨f,·⟩⊕⟨g,·⟩≤C

⟨f, α⟩+ ⟨g, β⟩ , (6)

where ⟨f, µ⟩ :=
∫
fdµ, ⟨f, ·⟩ ⊕ ⟨g, ·⟩ : (µ, ν) 7→ ⟨f, µ⟩+ ⟨g, ν⟩.

Further work could:

• Study the tightness of SK vs SM

• Potentially deduce existence/unicity of stochastic Monge maps (or equivalently
WOT plans) in a more general setting than previous proofs (limited to convex
weak cost [31])

• Find under which conditions duality holds

• Possibly reformulate the dual SK with some generalization of C-transform and
derive an approach similar to [19]

21/22 12/12/2023 Further research
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• Find under which conditions duality holds

• Possibly reformulate the dual SK with some generalization of C-transform and
derive an approach similar to [19]
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Kantorovitch relaxation
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Summary

WOT can prove useful when using an OT plan as generator since it allows
direct regularization

[19] suggests a noise outsourcing formulation and derive a neural
approximation scheme

• More general than previous works, can function well on some decently large
datasets

• Slow training, can fail to recover all modes

EOT could be used as regularzied cost in this WOT framework

Monge maps could be approached with a variance regularization

A Kantorovitch relaxation of WOT could be explored to try and prove more
general results, dual could be extended for practical use
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Appendix



Proof of (1) I

First, observe that for x ∈ X , π ∈ Π(α, β),

C̃γ(x, π(·|x)) −−−−−→
γ→+∞

{
c(x, T (x)) if π(·|x) = δT (x) for some T (x) ∈ Y
+∞ otherwise

since for a probability measure µ, Var (µ) = 0 ⇐⇒ ∃y, µ = δy . Therefore, by Beppo-Levi’s
lemma (the sequence is increasing in γ and nonnegative), one has∫

X
C̃γ(x, π(·|x)) −−−−−→

γ→+∞


∫
X
c(x, T (x))dα(x) if π(·|x) = δT (x) α-a.e. for T : X → Y

+∞ otherwise.

(7)
Notice that if π(·|x) = δT (x) α-a.e., then T (x) =

∫
Y ydπ(y|x) and therefore T is measurable

(at least when restricted to a set of probability 1 under α). Additionally in that case, for
any continuous bounded f : Y −→ R, one has∫

Y
f(y)dβ(y) =

∫
Y×X

f(y)dπ(y|x)dα(x)

=

∫
X
f(T (x))dα(x)
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Proof of (1) II
i.e. T♯α = β. Conversely, if there is some measurable T such that T♯α = β, the coupling π
defined by its first marginal π1 = α and conditional π(·|x) := δT (x) does indeed verify

π ∈ Π(α, β) using the same computation: for any continuous bounded f ,∫
Y
f(y)dπ2(y) =

∫
X×Y

f(y)dπ(x, y)

=

∫
X

∫
Y
f(y)dπ(y|x)dα(x)

=

∫
X
f(T (x))dα(x)

=

∫
Y
f(y)dβ(y).

As a result, the (possibly empty) set of πs for which the limiting cost in (7) is finite is

exactly described by the set of measurable maps T verifying T♯α = β, hence proving (1).
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Toy illustration of Monge as limit of WOT

(a) Cγ , γ = 1 (b) C̃γ , γ = 10

Figure 6: Toy experiment illustrating the difference between the γ-weak cost enforcing
higher variance 6a and our alternative definition penalizing it instead 6b. One can see that
as expected, we recover a basically deterministic map in the latter case.
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Proof of EOT as WOT

Since any π ∈ Π(α, β) such that the cost in EOT is finite verifies π ≪ α⊗ β, it also
holds that for any x ∈ X , π(·|x) ≪ β, as one can easily obtain its Radon-Nikodym

derivative: dπ(y|x) = dπ(x,y)
d(α⊗β)

dβ(y). Thus, one has

inf
π∈Π(α,β)

∫
X
Cε(x, π(·|x))dα(x) = inf

π∈Π(α,β)

∫
X

∫
Y

(
c(x, y) + ε log

(
dπ(y|x)

dβ

))
dπ(y|x)dα(x)

= inf
π∈Π(α,β)

∫
X×Y

(
c(x, y) + ε log

(
dπ(x, y)

d(α⊗ β)

))
dπ(x, y)

= Sε(α, β).
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Proof of SK duality I

Note that if the optimal coupling is of the form (δ,T )♯α with δ : x 7→ δx, we recover
the stochastic Monge OT (4). Additionally, as in K, the fact that Γ is a probability
measure is implied by the marginal constraints: if E [Γ1] = α, one has∫

P(X )

1dΓ1(µ) =

∫
P(X )

µ(X )dΓ1(µ)

= E [Γ1] (X )

= α(X )

= 1,

and therefore

Γ(P(X )× P(Y)) = Γ1(P(X ))

= 1.

Denoting M(P(X )× P(Y)) the set of nonnegative measures over P(X )× P(Y),
one can therefore take the infimum over Γ ∈ M(P(X )× P(Y)) verifying the
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Proof of SK duality II
marginal constraints. Assuming duality holds i.e. sup and inf can be swapped, one
has

SK(α, β) = inf
Γ

sup
f,g

⟨C,Γ⟩+ (⟨f, α⟩ − ⟨f,E [Γ1]⟩) + (⟨g, β⟩ − ⟨g,E [Γ2]⟩)

= sup
f,g

⟨f, α⟩+ ⟨g, β⟩+ inf
Γ

⟨C,Γ⟩ − ⟨f,E [Γ1]⟩ − ⟨g,E [Γ2]⟩

Where the infimum is over Γ ∈ M(P(X )× P(Y)) and f, g continuous bounded
functions on X , Y respectively. For such functions, the definition of E [Γ1] is
equivalent to

⟨f,E [Γ1]⟩ =
∫
P(X )

∫
X
f(x)dµ(x)dΓ1(µ)

=

∫
P(X )

⟨f, µ⟩ dΓ1(µ),
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Proof of SK duality III
and the same can be said for ⟨g,E [Γ2]⟩, whence

inf
Γ

⟨C,Γ⟩ − ⟨f,E [Γ1]⟩ − ⟨g,E [Γ2]⟩ = inf
Γ

∫
P(X )×P(Y)

(C(µ, ν)− ⟨f, µ⟩ − ⟨g, ν⟩)dΓ(µ, ν)

=

{
0 if ⟨f, ·⟩ ⊕ ⟨g, ·⟩ ≤ C
−∞ otherwise.
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