

Mean Curvature Motion of Point Cloud Varifolds

Mathis Hardion

1. Context

2. Main contributions, limitations

- 3. Extensions
- 4. Conclusion

2/11 12/12/20

- Varifold framework as a general model for surfaces
 - Relatively scarcely used
 - Authors aim to show its relevance in computational geometry
- Mean curvature flow
 - Surface fairing
- Approximate mean curvature

1. Context

2. Main contributions, limitations

3. Extensions

4. Conclusion

Main contributions

- Slight generalization of approximate mean curvature by considering 5 additional projectors instead of the identity
 - Not strongly motivated
 - Most choices of projector end up discarded
- Extension of convergence properties
 - Heavy, computational proofs
 - Uninformative bounds, hypotheses next to impossible to check in practice

Main contributions

- Derivation of corresponding (approximate) mean curvature flow for point cloud varifolds
 - "Standard" estimation of masses and tangent planes
 - Semi-implicit scheme: more accurate, but computationally costly for large point clouds
 - Desirable properties (planar barrier, sphere comparison) are shown in specific cases, which are always verified only in the case of the identity projector

1. Context

2. Main contributions, limitations

3. Extensions

4. Conclusion

7/11 12/12/20

Extensions

Non-uniform smooth varifolds

Definition

A generalized smooth varifold V associated to a $d\mbox{-manifold}\ M$ is such that

$$V = \pi_M^{-1} \sharp ||V|| = ||V|| \left(\{ x \in M, (x, T_x M) \in \cdot \} \right).$$

A simple mass estimator

Property

Let V be a varifold of finite mass, and X_1, \ldots, X_N be i.i.d random variables valued in \mathbb{R}^n and of law $\frac{\|V\|}{\|V\|(\mathbb{R}^n)}$. Then, with probability 1,

$$\frac{1}{N}\sum_{i=1}^N \delta_{X_i} \rightharpoonup^* \frac{\|V\|}{\|V\|(\mathbb{R}^n)}$$

where \rightharpoonup^* denotes the weak-* convergence.

4. Conclusion

Concluding remarks

■ Illustrates the weaknesses of the varifold framework and some of its strengths

■ Lack of a clear problem to solve

 \blacksquare Illustration only on toy data, no comparison with other algorithms

References

- William K. Allard. "On the First Variation of a Varifold". In: Annals of Mathematics 95.3 (1972), pp. 417-491.
- [2] Frederic J. Almgren. The theory of Varifolds. 1965.
- K. A. Brakke. The Motion of a Surface by Its Mean Curvature. Mathematical Notes 20. Princeton University Press, 1978.
- [4] Blanche Buet. "Discrete varifolds and surface approximation: representation, curvature, rectifiability". PhD thesis. Universite Claude Bernard Lyon 1, 2014.
- Blanche Buet. "Quantitative conditions of rectifiability for varifolds". en. In: Annales de l'Institut Fourier 65.6 (2015), pp. 2449-2506.
- Blanche Buet, Gian Leonardi, and Simon Masnou. "A Varifold Approach to Surface Approximation". In: Archive for Rational Mechanics and Analysis 226 (Nov. 2017).
- Buet, Blanche and Rumpf, Martin. "Mean curvature motion of point cloud varifolds". In: ESAIM: M2AN 56.5 (2022), pp. 1773-1808.
- [8] Nicolas Charon and Alain Trouvé. "The Varifold Representation of Nonoriented Shapes for Diffeomorphic Registration". In: SIAM Journal on Imaging Sciences 6.4 (Jan. 2013), pp. 2547-2580.
- [9] Mathieu Desbrun et al. "Implicit Fairing of Irregular Meshes Using Diffusion and Curvature Flow". In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques. SIGGRAPH '99. USA: ACM Press/Addison-Wesley Publishing Co., 1999, pp. 317-324.
- [10] Lawrence C. Evans and Joel Spruck. "Motion of Level Sets by Mean Curvature IV". In: The Journal of Geometric Analysis 5.1 (Mar. 1995), pp. 77–114.
- [11] Irène Kaltenmark, Benjamin Charlier, and Nicolas Charon. "A General Framework for Curve and Surface Comparison and Registration with Oriented Varifolds". In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017, pp. 4580-4589.
- [12] Laurent Chisholm Young. "Surfaces paramétriques généralisées". fr. In: Bulletin de la Société Mathématique de France 79 (1951), pp. 59-84.

11/11 12/12/2023

References

Mass estimation

$$m_i = \frac{C_\lambda \delta^d}{\sum_{j=1}^N \lambda\left(\frac{\|x_i - x_j\|}{\delta}\right)},$$

 $\lambda = \mathbb{I}_{(-1,1)}:$

$$m_i = \frac{\omega_d \delta^d}{k_\delta}, \ k_\delta := |\{j, \|x_j - x_i\| < \delta\}|$$

Tangent space estimation

.1/11 12/12/202

Main results

Property

For d = n - 1, $M \subset \mathbb{R}^n$ a \mathscr{C}^2 d-manifold of mean curvature vector $H : M \to \mathbb{R}^n$, $V = \pi_M^{-1} \sharp \mathscr{H}_{|M}^d$, and for $\Pi \in \{\Pi_P, -2\Pi_{P^{\perp}}, 2\mathrm{Id}, \Pi_{(T_xM)^{\perp}} \circ \Pi_P, -2\Pi_{(T_xM)^{\perp}} \circ \Pi_{P^{\perp}}, 2\Pi_{(T_xM)^{\perp}}\}$, then for any $x \in M$, $H_{\varepsilon}^{\Pi}(x, V) \xrightarrow[\varepsilon \to 0]{} H(x).$

Additionally, if M is of class \mathscr{C}^3 , $|H_{\varepsilon}^{\Pi}(x,V) - H(x)| = O(\varepsilon)$.

Definition

$$\delta(V,W) \coloneqq \sup_{\substack{x \in \operatorname{supp}}_{r>0}} \left\{ \frac{\Delta_{\mathscr{B}(x,r)}(\|V\|, \|W\|)}{(\eta_d(\|V\|, \|W\|) + r)^d} \right\}$$

Main results

Theorem: F

or V a d-regular varifold (for a constant C_0) of finite mass, $(V_i)_i$ a sequence of d-varifolds weak-* converging to V such that their masses are all compactly supported in $K \subset \mathbb{R}^n$, (x_i) a sequence of \mathbb{R}^n converging to $x \in M$, (ε_i) a sequence of (0,1) converging to 0 and such that $||x - x_i|| + \eta_d(||V||, ||V_i||) \leq 8\left(1 + (2C_0)^{\frac{1}{d}} + C_0^{\frac{2}{d}}\right)$. Then, (i) $\delta(V, V_i) \to 0$, (ii) $\left|H_{\varepsilon_i}^{\Pi}(x_i, V_i) - H_{\varepsilon_i}^{\Pi}(x, V)\right| = O\left(\frac{\delta(V, V_i) + ||x - x_i||}{\varepsilon_i^2}\right)$.

11/11 12/12/2023

Appendix

Main results

Corollary

For $V = \pi_M^{-1} \sharp \mathscr{H}_{|M}^d$ where M is a \mathscr{C}^3 compact d-manifold without boundary, $(V_i)_i$ a sequence of d-varifolds weak-* converging to V such that their masses are all compactly supported in $K \subset \mathbb{R}^n$, (x_i) a sequence of \mathbb{R}^n converging to $x \in M$, (ε_i) a sequence of (0,1) converging to 0 and such that $||x - x_i|| + \eta_d(||V||, ||V_i||) = o(\varepsilon_i)$, then

$$\left| H_{\varepsilon_i}^{\Pi}(x_i, V_i) - H(x, V) \right| = O\left(\frac{\delta(V, V_i) + \|x - x_i\|}{\varepsilon_i^2} + \varepsilon_i \right),$$

And thus $H_{\varepsilon_i}^{\Pi}(x_i, V_i) \to H(x, V)$ as soon as $\sqrt{\delta(V, V_i) + \|x - x_i\|} = o(\varepsilon_i)$.

