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1. Context
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_ HMC and RHMUC : a better exploration!

Geodesic flows

m Hamiltonian equations

modeling motion dynamics
m Hamiltonian = kinetic energy + potential energy

m RHMC: generalization with non-constant curvature

g

FicGURE 1: HMC from Chi Feng demo
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_ Questions raised by the document studied

Girolami and Calderhead’s paper areas of improvements [7]
m A better integration scheme 7
m A better metric 7

® A numerical estimation of the curvature?

Theorem: two theoretical results

m Verlet’s leapfrog is sympletic and assures time reversibility which
implies detailed balance [4]

m The geodesic flow for negatively curved compact Riemannian manifolds
is ergodic [1]
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_ Three improvements already made

Three interesting papers
m Autodifferentiation for Bayesian neural network|[6]
m No-U-Turn (NUTS) : The No-U-Turn Sampler [8]

m Softabs metrics[3] : ” maintain the desirable behavior of the Hessian in
convex neighborhood”
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FIGURE 2: NUTS from ’A Conceptual Introduction to Hamiltonian Monte Carlo’ [2]
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2. Experiments
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_ Automatic differentiation and HMC vs RHMC

A trade-off between speed and precision

m Autodifferentiation makes RHMC slower and needs explicit solutions
(x50 to x1000).

m Autocorrelations are far better for RHMC (no small oscillations).
m RHMC sampling has smaller KL divergence ( 0.3 < 1670 )

HMC vs RHMC 200D Gaussian distribution
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_ Softabs

More stable but needs better implementation
m Too slow to be used with implicite integration.
m Assure SDP stability.
m Should use a specialised framework, STAN ?

HMC vs RHMC Softabs
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_ Hyperparameter influences

RUMIC trajectory (€= 1, N=20) and posteror dnsity - =1 Moving sverage f the scceptation
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I  Multimodal distributions for RHMC

Gaussian mixture (RHMC) HMC

Likelihood contour

Traectary of the RUHNC ( - 0.1, =31 Tajectoryofthe mult mdal HIC sanpler
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I  Adding the likelihood to the potential

w £(0) = L(0,Y) = L(0) + L(Y]0)

Trajectory of the RMHMC (¢ =0.05, N=4)

m Does not help explore other modes in this case ...

MATHEMATIQUES

VISION
vram I e



3. Conclusion

MATHEMATIQUES

VISION



_ Conclusion & extensions

m Easily implemented and can work really well, but hyperparameter tuning is not
simple, done manually in the paper

m Derivation of the (expected) Rao metric is intractable in some cases (e.g.
mixture models)

® Approximation must be used or other metrics chosen
® The problem of the right choice of matrix is not entirely solved although it gives
very good directives

m Could be coupled with parallel tempering methods to better handle the
multimodal case

m Alternative geometries could be investigated, for instance with MMD [5] or
Wasserstein [9] distances
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_ The curse of dimensionality

Measure concentration
m Motivates Bayesian inference

® Integration instead of Optimization
® Monte Carlo estimation

m Motivates manifold hypothesis

D =100

FIGURE 3: Gaussian sampling projections from Jean Feydy course
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I NUTS HMC using STAN

STAN a hard but powerful framework
m Good performance but bad documentation
m Autograd and RHMC are not upgraded in python yet.

m Needs to create the cython script by yourself for now.

FI1GURE 4: NUTS HMC for funnel’s distribution
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_ What is an efficient sampling ?

Sampling techniques
m Use of dependencies : MCMC

m Exploration-exploitation dilemma

® Exploration to have all the ”typical” states
® Exploitation to obtain the right proportions

Exploration Exploitation Metropolis Hastings TP4

Trajectoire du MCMC HM ex1 A args = (0.5, 100000000000000.0, 0.001)
Trajectoire du MCMC HM ex1 A args = (0.5, 100.0, 0.1)
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B 1oy problem

m Y|0 ~ N (360°%%) (®: Hadamard product)
m Prior 0 ~ N (0,%)
m Fisher-Rao metric tensor G(6) = diag(6); *diag(d) + X!

Likelihood contour Prior contour

-1.0 -0.5 0.0 0.5 -1.0 -0.5 0.0 0.5

MATHEMATIQUES

VISION



_ Experiments using our own implementation

dons RMIMC (605, =5)

Likelihood contour — Autoconeaton of dm 0
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BB Multimodal distributions for HMC

HMC
m HMC can be computed but doesn’t explore enough.

HMC 2D Gaussian Mixture and Banana-shape

w“ Trajectory of the multimodal HMC sampler Trajectory of the banana HMC sampler
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