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Abstract

Gaussian Processes (GPs) are a popular prior over functions in regression tasks, but
the standard approach becomes untractable for large datasets which are ubiquitous
in modern data science. It is therefore crucial to find reliable, computationally
inexpensive approximations for the model to be usable in practice. The studied
paper builds upon sparse GPs by introducing a variational framework to select the
inducing variables, which enjoys the benefits of keeping the prior exact by only
approximating the posterior, and reduced overfitting due to treating the inducing
variables separately. This report summarizes the approach and highlights its key
strengths and weaknesses. Numerical experiments are conducted to compare the
method to classic regression algorithms and thus get a broader perspective on GP
models. Extensions in the literature are reviewed and novel tentative directions of
further research are suggested.

1 Introduction

This report discusses the main contributions of the studied article [20], their strengths, shortcomings
and extensions. The paper introduces a novel (at the time) framework to approximate Gaussian
Processes (GPs). GPs are widespread in machine learning [15] as a nonparametric prior over
functions. In the context of standard GPs, it may be needed to invert a covariance matrix, which
can be computationally heavy, then the exact formulation of the posterior and marginal likelihood
become intractable for large datasets. Finding reliable, computationally cheaper estimates is thus of
relevance in this context. The paper builds upon sparse GP methods [18, 24, 15] which essentially
consist in selecting a small amount of inducing variables to construct a low-rank approximation of
the covariance matrix, which is much cheaper to deal with.

The report is organized as follows: Section 2 provides context about sparse Gaussian Process
Regression (GPR), which is the point of the studied paper. Section 3 then explains and critically
adresses the contributions of the paper. The experiments proposed as part of this project are presented
in Section 4. Then, extensions of this work in the existing literature as well as potential further
directions of research are discussed in Section 5.

2 Background

2.1 Gaussian Process Regression

Given a space X , f = (f(x))x∈X is said to be a GP if any subset of random variables indexed by
X is a Gaussian vector. It is uniquely determined by its mean (m(x))x∈X and covariance kernel
(k (x,x′))x∈X , the latter often being parametrized by a set of hyperparameters θ. In machine learning,
one can use such a GP as prior over a function f on X , then extend it as a posterior given the data.
Then, we consder as inputs (xi)

n
i=1 and we observe (yi)

n
i=1 their noised images through f , i.e.
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yi = f(xi)+ εi where εi ∼ N (0, σ2). By considering f = (f(xi))i as a GP, the induced posterior is
also a GP. For exact regression, one would estimate the parameters θ, σ by maximizing the marginal
likelihood, that is:

p(y) = N (y|0, σIn +Knn) (1)
where Knn := (k(xi,xj))i,j is the covariance matrix on the training inputs. The problem is that
maximizing the above likelihood involves inverting a n× n matrix at each step of the optimization
routine since Knn depends on the parameters, which can be too computationally demanding for large
large datasets.

2.2 Inducing variables

In order to face the problem of computational complexity with large datasets, the idea of sparse
GP methods is to replace Knn by an approximation matrix Qnn which can be inverted quicker.
Approaches like [19], [17] use a smaller subset Xm of m ≪ n ’inducing variables’1, consisting in m
training samples or ’pseudo-inputs’. Learning this set, as well as the hyperparameters, is crutial to
obtain a sparse GP method. This idea is to approximate the marginal likelihood (1) to get these values.
To this end, the Projected Process (PP) approximation [17] considers the approximated marginal
likelihood by replacing Knn with some matrix Qnn. This substitution is defined by the Nyström
approximation:

Qnn = KnmK−1
mmKmn (2)

where Knm is the cross-covariance matrix between training and inducing points, Knm = KT
mn, and

Kmm is the covariance matrix on the inducing inputs2. With such an approximation, the Woodbury
matrix identity [7] allows for much faster inversion of σIn +Qnn, in O(m2n) rather than O(n3).

The main shortcomings of this method are that it ends up modifying the prior, and can be prone to
overfitting since Xm adds an extra set of variables to be optimized. To tackle this issue, Titsias [20]
suggests a variational approach to determine Xm instead, which is adressed in Section 3.

3 Contributions of the article

3.1 Variational Learning

The main idea of the paper is to directly approximate the posterior distribution rather than modify the
prior. To do so, the author starts by observing that the predictive distribution writes the first integral
for points z:

p(z|y) =
∫

p(z|f)p(f |y)df =
∫

p(z|fm, f)p(f |fm,y)p(fm|y)dfdfm

and then uses a set of function points fm corresponding to pseudo-inputs Xm, independent from the
training inputs, as well as the augmented joint model p(y|f)p(z, fm, fm), to write the second integral.

Consider the scenario where fm is a sufficient statistic for f , i.e. p(z|fm, f) with p(z|fm), then if
q(z) := p(z|y) and ϕ(fm) := p(fm|y),

q(z) =

∫
p(z|fm)ϕ(fm)dfm =

∫
q(z, fm)dfm (3)

In practice, it may be difficult to find inducing variables fm that are sufficient statistics, then satisfy
this scenario. In such case, the author chooses ϕ(fm) to be a ’free variational Gaussian distribution’,
different a priori from p(fm|y) and discribed by some mean µ and covariance matrix A. The
approximate posterior GP mean and covariance are then described by those parameters, as well as
auxialiary matrices K [20]. Note that this system induces the form of the posterior which is computed
in O(m2n) rather than O(n3) in a standard setting.

Now the problem consists in choosing ϕ, i.e. µ and A, and the inducing inputs Xm. The author
then introduces a variational approach to learn Xm as a variational parameter by minimizing some

1Set of inducing variables: Xm =
(
x
(m)
i

)m

i=1
2Auxiliary matrices: Knm :=

(
k
(
xi,x

(m)
j

))n,m

i,j=1
=: KT

mn and Kmm :=
(
k
(
x
(m)
i ,x

(m)
j

))m

i,j=1
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Kullback-Leibler (KL) divergence. The idea is to minimize the ’distance’ (KL divergence, which is
actually not a distance, but remains a relevant comparison tool) between the variational distribution
and the exact posterior distribution over the latent function values. The underlaying problem is then:

minKL(q(f , fm)||p(f , fm|y)) (4)
This minimization is also equivalent to the maximization of the following variational lower bound of
the true log marginal likelihood, once ϕ is optimal:

FV (Xm) = log(N (y|0, σ2I +Qnn))−
1

2σ2
Tr(K̃) (5)

where Qnn = KnmK−1
mmKmn and K̃ = Knn − Qnn. This objective function is relevant, since

it contains a regularization trace term, which differentiates it from the logarithm of (1) (Projected
Process marginal likelihood). This term represents the total variance of the conditional prior which is
also the squared error of predicting the training latent values f from the inducing variables fm. Then
if it is equal to 0, fm are sufficient statistics. Yet in the case of variational learning, the goal is to
optimize the whole term.

Two optimization paradigms are to consider: gradient-based optimization, in the case where the
objective functions are differentiables, and combinatory approach else. The author notices that
some kernel functions, especially in high dimension, may not be differentiables. In such case, the
paper suggests a disrecte selection over the training inputs to build Xm. It is based on a greedy
algorithm and is comparable to a EM approach (select and adapt). The main result is that it makes
the objective function FV monotically increase, hence the divergence KL(q(f , fm)||p(f , fm|y))
decreases optimally (see more details in [20]). Yet, the comparisons and experiments done in the
paper take place in the differentiable setting. Hence, gradient-based optimization approaches are used
in what follows.

3.2 Comparisons and experiments

Given the framework, paper [20] provides toy experiments and comparisons over real-world datasets
between the variational approach with FV and PP and SPGP approaches (similar to PP, but here
Qnn = diag(Knn −KnmK−1

mmKmn) +KnmK−1
mmKmn).

First a small one-dimensional dataset with 200 training points is considered from [19]. Sparse models
are trained, then compared with exact GP predictions. The predictive predoctions of the 3 methods
(variational, PP, SPGP) are built from 15 inducing points. As expected, the variational approach
outperforms the two others, leading to a variational lower bound value close to the true log marginal
likelihood, by additionally matching the hyperparameters. In a more challenging setting, that is
maintaining only 20 training points, the variational GP approach still matches the exact distribution,
while PP and SPGP overfit or lack of accuracy. Finally, this toy experiments shows at the same
time: the accuracy of the variational approach, as well as its robustness to overfitting, due to its trace
regularization term in (5).

In a second time, the paper explores four real-world datasets: Boston-housing, a small one (about
500 training data), and KIN40K, SARCOS and ABALONE, large ones (thousands of training data).
The maximization, w.r.t. the hyperparameters and the inducing variables, of the objective functions
relative to variational / PP / SPGP approaches, is studied. By initializing the inducing variables in
different ways, and considering the standardized mean squared error and the standardized negative
log probability density as metrics, we notice again that only the variational approach is able to provide
adequate results in terms of accuracy and overfitting and match the exact GP prediction.

3.3 Strengths and limitations of the paper

The above studies demonstrate the strengths of the paper. Indeed, the author suggests a variational
approach to Sparse Gaussian Regression by considering the inducing variables in a specific way,
which has been influential in the literature as we shall see in section 5. It allows to keep the exact prior
by approximating only the posterior which leaves room for strong mathematical rigor, by means of a
KL comparison and optimization for instance. Moreover, the underlying algorithms are well-built to
be deployed on GPU and enjoy computational efficiency.

Yet, some rooms of improvement can be highlighted. First, in Section 3 ’Variational Learning’ of the
paper, because of practical difficulties to find inducing variables fm that are sufficient statistics, ϕ is
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taken as a "free" variational Gaussian distribution, which was not directly justified to converge to the
exact posterior. Such convergence was more recently investigated in [2] (see section 5).

Also, one can make a few remarks on the datasets involved in the experiments of the paper. The toy
experiments are made with a one-dimensional dataset consisting in 200 points. Its nature and the
corresponding regression task are then very simple to handle, as expected. Regarding the real-life
datasets provided, a simple linear regression can perform well on some of those (see section 4),
meaning they can be considered to be quite simple. Thus, the proposed method could have been
tested on more complex datasets, in order to further test its capabilities.

Finally, without it being an absolute weak point, the article focuses only on GP methods for regression,
and does not mention performance of other paradigms on the same tasks. Yet, it could be informative
to make a comparison between the suggested Sparse Gaussian Regression in [20] and other models,
in order to highlight the relevance of the Gaussian modeling.

4 Experiments

We now apply the variational SGP method provided by the maximization of (5) to different datasets
and compare its performance with other simple regression algorithms (provided by scikit-learn [13]).
We do so using the efficient, GPU-accelerated framework provided by the GPyTorch library [6],
and use the Standardized Mean Square Error as performance metric as in [20]. The code, data and
hyperparameters used are provided in [8]. The results are reported table 1. One can notice that for

LR GB VARSGP
SARCOS [22] 0.075 0.0258 0.034
Abalone [12] 0.478 0.574 0.436

Forest Fires [3] 0.999 1.249 1.009
Electrical Grid Simulated Data [1] 0.359 0.045 0.063

Table 1: SMSE of Linear Regression (LR), Gradient Boosting (GB), and variational sparse GP
(VARSGP) on four datasets.

the SARCOS and Abalone datasets used in the paper, Linear Regression and Gradient Boosting
can achieve somewhat similar or even better performance than the variational sparse GP (and do so
with lower run time). The same can be said about the Forest Fires data, although it is a much more
complex regression task and all tested methods perform poorly. Finally, the Electrical Grid Simulated
Data is complex enough that linear regression is far from the best, but GB still outperforms our
VARSGP reimplementation. From these observations, one can put Gaussian Processes in perspective:
while they provide an elegant and versatile framework, they may still be outperformed by more basic,
simpler to train algorithms depending on the task. In a Machine Learning pipeline, it is indeed best to
start with simple models to assess the complexity of the task before using more advanced models like
GPs.

5 Extensions

5.1 In the literature

Since the publication of [20], many works have improved the method and expanded upon the
variational SGP framework. As suggested at the end of the paper, the next step was the utilization
of the method within Gaussian Process Latent Variable Models achieved the next year [21]. The
main improvements of more recent literature on the topic is scalability and GPU acceleration, which
are important to consider in modern data challenges. Some methods include leveraging Stochastic
Gradient Descent with natural gradients [9], scaling GP classification with variational bounds [10],
and batch conjugate gradient algorithms with PyTorch and GPU integration yielding the GPyTorch
python package [6]. One should also note that modern methods can allow for exact (i.e. non sparse)
GP inference even on large datasets [23]. A review of recent scalable methods can be found in [11].
On the theoretical standpoint, the convergence rates of the variational approximation were recently
investigated by [2], showing that one can make the KL divergence arbitrarily small with the rate of
increase for m slower than the increase in n.
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5.2 Other possible directions of further research

We now provide possible extensions that are, to the best of our knowledge, original to this report. Con-
cerning the maximization of (5), a recent contribution involving JKO flows in the Bures-Wasserstein
space [4] seems promising and could potentially be utilized within variational SGP to further enhance
performance. The following question could also be further investigated: can distances other than
KL be utilized to quantify discrepancy between the variational distribution and the true augmented
posterior in (4), and still enjoy scalability ? The KL divergence has a relevant relationship with the
maximum likelihood estimation, however it suffers from lacking symmetry and the triangle inequality,
and from the fact that it goes to +∞ as soon as the supports of the measures are disjoint. Other
metrics such as the Wasserstein distance or its computationally cheaper counterpart, the Sinkhorn
divergence, have gained traction in the computational mathematics community for their geometric
properties [16, 14]. As such, considering the MSE is one of the most widely used evaluation metrics,
it would be possible to directly account for it in the variational minimization by using Wasserstein-2
or the like. Despite our best efforts, we have unfortunately not been able to find a tractable way to
apply such an idea, due to the following difficulties: first, the simplifications that happen with the
KL divergence seem to be specific to it, meaning it is more challenging to get a closed-form formula
for a variational bound. Second, even if one was able to apply gradient descent with the Sinkhorn
divergence using the framework of [5], it would be required to sample from the true posterior which
is precisely what is untractable in our case of interest. Maximum Mean Discrepancy (MMD) norms
would most likely encounter similar problems.

6 Conclusion

The studied article ’Variational Learning of Inducing Variables in Sparse Gaussian Processes’ [20] is
complete and innovative (at its time) when it comes to inference by leveraging Gaussian Processes.
In particular, it suggests a variational framework for sparse GP regression that outperforms the
state-of-the-art at its time. The idea is to learn jointly the hyperparameters and the inducing variables
by minimizing the KL divergence between the exact GP distribution (posterior) and the approximate
one. It is at the time accurate, but also designed to avoid overfitting.

Strenghts and limitations of the paper have been pointed as part of this review. First notice that
the variational approach differs in nature by comparison to PP and SPGP, in that it keeps the prior
unchanged and deals only with the posterior with the data. Also, this way of proceeding can be
deployed easily on GPU and enjoy computational efficiency. Yet, some limitations concerning the
simplicity of the experiments, as well as the lack of comparison between non-GP based regression
methods, have been pointed. This is why we proceeded to comparisons between GP methods, in
particular the variational approach, and non-GP based ones, such as Linear Regression and Gradient
Boosting, on various datasets. Gradient Boosting could provide better results that the article’s
approach, meaning that it is relevant not to focus on GP methods only, but first consider the nature of
the problem and the relevance / need to exploit more advanced models, such as variational GP.

Finally, some extensions of this work have been highlighted. The most significant ones from the
litterature concern the scalability of GP-based methods on GPU, and the advent of exact (non-
sparse) GP methods, even on large datasets (which was the main motivation of the studies paper).
Moreoverver original extensions were discussed in this report, concerning the mathematical tools to
use to build and solve the optimization problems. Discussions on the KL divergence, as well as the
Sinkhorn divergence and the Wasserstein distance were given.
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